J. Udelson, R. Patten, and M. Konstam, New concepts in post-infarction ventricular remodeling, Rev Cardiovasc Med, vol.4, issue.3, pp.3-12, 2003.

P. Hsieh, V. Segers, M. Davis, C. Macgillivray, J. Gannon et al., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury, Nature Medicine, vol.116, issue.8, pp.970-974, 2007.
DOI : 10.1038/nm1618

J. Kajstura, N. Gurusamy, B. Ogorek, P. Goichberg, C. Clavo-rondon et al., Myocyte Turnover in the Aging Human Heart, Circulation Research, vol.107, issue.11, pp.1374-86, 2010.
DOI : 10.1161/CIRCRESAHA.110.231498

R. Gaetani, L. Barile, E. Forte, I. Chimenti, V. Ionta et al., New Perspectives to Repair a Broken Heart, Cardiovascular & Hematological Agents in Medicinal Chemistry, vol.7, issue.2, pp.91-107, 2009.
DOI : 10.2174/187152509787847128

R. Gaetani, G. Rizzitelli, I. Chimenti, L. Barile, E. Forte et al., Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application, Journal of Cellular and Molecular Medicine, vol.14, issue.5, pp.1071-1078, 2010.
DOI : 10.1111/j.1582-4934.2010.01078.x

A. Smits, L. Van-laake, K. Den-ouden, C. Schreurs, K. Szuhai et al., Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium, Cardiovascular Research, vol.83, issue.3, pp.527-562, 2009.
DOI : 10.1093/cvr/cvp146

E. Messina, D. Angelis, L. Frati, G. Morrone, S. Chimenti et al., Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart, Circulation Research, vol.95, issue.9, pp.911-932, 2004.
DOI : 10.1161/01.RES.0000147315.71699.51

R. Smith, L. Barile, H. Cho, M. Leppo, J. Hare et al., Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens, Circulation, vol.115, issue.7, pp.896-908, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.655209

P. Van-vliet, M. Roccio, A. Smits, A. Van-oorschot, C. Metz et al., Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy, Netherlands Heart Journal, vol.16, issue.5, pp.163-172, 2008.
DOI : 10.1007/BF03086138

A. Smits, P. Van-vliet, C. Metz, T. Korfage, J. Sluijter et al., Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology, Nature Protocols, vol.36, issue.2, pp.232-275, 2009.
DOI : 10.1038/nprot.2006.236

M. Goumans, T. De-boer, A. Smits, L. Van-laake, P. Van-vliet et al., TGF-??1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro, Stem Cell Research, vol.1, issue.2, pp.138-187, 2008.
DOI : 10.1016/j.scr.2008.02.003

N. Fedorovich, H. Wijnberg, W. Dhert, and J. Alblas, Distinct Tissue Formation by Heterogeneous Printing of Osteo- and Endothelial Progenitor Cells, Tissue Engineering Part A, vol.17, issue.15-16, pp.2113-2134, 2011.
DOI : 10.1089/ten.tea.2011.0019

T. Boland, T. Xu, B. Damon, and X. Cui, Application of inkjet printing to tissue engineering, Biotechnology Journal, vol.272, issue.9, pp.910-917, 2006.
DOI : 10.1002/biot.200600081

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. Markwald, Organ printing: computer-aided jet-based 3D tissue engineering, Trends in Biotechnology, vol.21, issue.4, pp.157-61, 2003.
DOI : 10.1016/S0167-7799(03)00033-7

J. Sluijter, M. Smeets, E. Velema, G. Pasterkamp, and D. De-kleijn, Increased collagen turnover is only partly associated with collagen fiber deposition in the arterial response to injury, Cardiovascular Research, vol.61, issue.1, pp.186-95, 2004.
DOI : 10.1016/j.cardiores.2003.09.028

A. Beltrami, L. Barlucchi, D. Torella, M. Baker, F. Limana et al., Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration, Cell, vol.114, issue.6, pp.763-76, 2003.
DOI : 10.1016/S0092-8674(03)00687-1

S. Miyamoto, N. Kawaguchi, G. Ellison, R. Matsuoka, T. Shin-'oka et al., Cardiac Stem Cells Derived From Adult Rat Hearts, Stem Cells and Development, vol.19, issue.1, pp.105-121, 2010.
DOI : 10.1089/scd.2009.0041

R. Gaetani, M. Ledda, L. Barile, I. Chimenti, D. Carlo et al., Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields, Cardiovascular Research, vol.82, issue.3, pp.411-431, 2009.
DOI : 10.1093/cvr/cvp067

V. Vacharathit, E. Silva, and D. Mooney, Viability and functionality of cells delivered from peptide conjugated scaffolds, Biomaterials, vol.32, issue.15, pp.3721-3729, 2011.
DOI : 10.1016/j.biomaterials.2010.12.048

N. Landa, L. Miller, M. Feinberg, R. Holbova, M. Shachar et al., Effect of Injectable Alginate Implant on Cardiac Remodeling and Function After Recent and Old Infarcts in Rat, Circulation, vol.117, issue.11, pp.1388-96, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.727420

J. Yu, Y. Gu, K. Du, S. Mihardja, R. Sievers et al., The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model, Biomaterials, vol.30, issue.5, pp.751-757, 2009.
DOI : 10.1016/j.biomaterials.2008.09.059

O. Tsur-gang, E. Ruvinov, N. Landa, R. Holbova, M. Feinberg et al., The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction, Biomaterials, vol.30, issue.2, pp.189-95, 2009.
DOI : 10.1016/j.biomaterials.2008.09.018

J. Leor, S. Aboulafia-etzion, A. Dar, L. Shapiro, I. Barbash et al., Bioengineered Cardiac Grafts : A New Approach to Repair the Infarcted Myocardium?, Circulation, vol.102, issue.Supplement 3, pp.56-61, 2000.
DOI : 10.1161/01.CIR.102.suppl_3.III-56

Y. Sapir, O. Kryukov, and S. Cohen, Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration, Biomaterials, vol.32, issue.7, pp.1838-1885, 2011.
DOI : 10.1016/j.biomaterials.2010.11.008

E. Ruvinov, J. Leor, and S. Cohen, The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction, Biomaterials, vol.32, issue.2, pp.565-78, 2011.
DOI : 10.1016/j.biomaterials.2010.08.097

E. Ruvinov, J. Leor, and S. Cohen, The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model, Biomaterials, vol.31, issue.16, pp.4573-82, 2010.
DOI : 10.1016/j.biomaterials.2010.02.026

N. Fedorovich, R. Haverslag, W. Dhert, and J. Alblas, The Role of Endothelial Progenitor Cells in Prevascularized Bone Tissue Engineering: Development of Heterogeneous Constructs, Tissue Engineering Part A, vol.16, issue.7, pp.2355-67, 2010.
DOI : 10.1089/ten.tea.2009.0603

M. Radisic, L. Yang, J. Boublik, R. Cohen, R. Langer et al., Medium perfusion enables engineering of compact and contractile cardiac tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.2, pp.507-523, 2004.
DOI : 10.1152/ajpheart.00171.2003

W. Zimmermann, I. Melnychenko, G. Wasmeier, M. Didie, H. Naito et al., Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts, Nature Medicine, vol.107, issue.4, pp.452-460, 2006.
DOI : 10.1016/S0735-1097(03)00092-5

Y. Miyahara, N. Nagaya, M. Kataoka, B. Yanagawa, K. Tanaka et al., Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction, Nature Medicine, vol.262, issue.4, pp.459-65, 2006.
DOI : 10.1016/S0142-9612(03)00110-8

K. Vrijsen, J. Sluijter, M. Schuchardt, B. Van-balkom, W. Noort et al., Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells, Journal of Cellular and Molecular Medicine, vol.14, issue.5, pp.1064-70, 2010.
DOI : 10.1111/j.1582-4934.2010.01081.x

I. Chimenti, R. Smith, T. Li, G. Gerstenblith, E. Messina et al., Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice, Circulation Research, vol.106, issue.5, pp.971-80, 2010.
DOI : 10.1161/CIRCRESAHA.109.210682