E. Pick, K. Hofmann, and M. H. Glickman, PCI Complexes: Beyond the Proteasome, CSN, and eIF3 Troika, Molecular Cell, vol.35, issue.3, pp.260-264, 2009.
DOI : 10.1016/j.molcel.2009.07.009

A. M. Ellisdon and M. Stewart, Structural biology of the PCI-protein fold, BioArchitecture, vol.482, issue.4, 2012.
DOI : 10.1126/science.297.5588.1837

R. I. Enchev, A. Schreiber, F. Beuron, and E. P. Morris, Structural Insights into the COP9 Signalosome and Its Common Architecture with the 26S Proteasome Lid and eIF3, Structure, vol.18, issue.4, pp.518-527, 2010.
DOI : 10.1016/j.str.2010.02.008

E. Pick and L. Pintard, In the land of the rising sun with the COP9 signalosome and related zomes. Symposium on the COP9 signalosome, proteasome and eIF3, EMBO Rep, pp.343-348, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00395632

H. Scheel and K. Hofmann, Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes, BMC Bioinformatics, vol.6, issue.1, p.71, 2005.
DOI : 10.1186/1471-2105-6-71

M. Dessau, The Arabidopsis COP9 Signalosome Subunit 7 Is a Model PCI Domain Protein with Subdomains Involved in COP9 Signalosome Assembly, THE PLANT CELL ONLINE, vol.20, issue.10, pp.2815-2834, 2008.
DOI : 10.1105/tpc.107.053801

R. I. Enchev, Structural basis for a reciprocal regulation between SCF and CSN, Cell Rep, pp.616-627, 2012.

S. Lyapina, Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome, Science, vol.292, issue.5520, pp.1382-1385, 2001.
DOI : 10.1126/science.1059780

C. Schwechheimer, Interactions of the COP9 Signalosome with the E3 Ubiquitin Ligase SCFTIR1 in Mediating Auxin Response, Science, vol.292, issue.5520, pp.1379-1382, 2001.
DOI : 10.1126/science.1059776

M. H. Glickman, A Subcomplex of the Proteasome Regulatory Particle Required for Ubiquitin-Conjugate Degradation and Related to the COP9-Signalosome and eIF3, Cell, vol.94, issue.5, pp.615-623, 1998.
DOI : 10.1016/S0092-8674(00)81603-7

G. A. Cope, Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1, Csn5 in cleavage of Nedd8 from cul1, pp.608-611, 2002.
DOI : 10.1126/science.1075901

V. Maytal-kivity, N. Reis, K. Hofmann, and M. H. Glickman, MPN + , a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function, BMC Biochem, vol.3, issue.28, 2002.

R. Verma, Role of Rpn11 Metalloprotease in Deubiquitination and Degradation by the 26S Proteasome, Science, vol.298, issue.5593, pp.611-615, 2002.
DOI : 10.1126/science.1075898

E. Pick, The Minimal Deneddylase Core of the COP9 Signalosome Excludes the Csn6 MPN??? Domain, PLoS ONE, vol.7, issue.8, p.43980, 2012.
DOI : 10.1371/journal.pone.0043980.s007

M. Sanches, B. S. Alves, N. I. Zanchin, and B. G. Guimaraes, The Crystal Structure of the Human Mov34 MPN Domain Reveals a Metal-free Dimer, Journal of Molecular Biology, vol.370, issue.5, pp.846-855, 2007.
DOI : 10.1016/j.jmb.2007.04.084

H. Zhang, The crystal structure of the MPN domain from the COP9 signalosome subunit CSN6, FEBS Letters, vol.54, issue.8, pp.1147-1153, 2012.
DOI : 10.1016/j.febslet.2012.03.029

G. G. Kotiguda, The Organization of a CSN5-containing Subcomplex of the COP9 Signalosome, Journal of Biological Chemistry, vol.287, issue.50, pp.42031-42041, 2012.
DOI : 10.1074/jbc.M112.387977

D. Finley, Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome, Annual Review of Biochemistry, vol.78, issue.1, pp.477-513, 2009.
DOI : 10.1146/annurev.biochem.78.081507.101607

N. Wei and X. W. Deng, The COP9 Signalosome, Annual Review of Cell and Developmental Biology, vol.19, issue.1, pp.261-286, 2003.
DOI : 10.1146/annurev.cellbio.19.111301.112449

E. L. Sonnhammer and E. V. Koonin, Orthology, paralogy and proposed classification for paralog subtypes, Trends in Genetics, vol.18, issue.12, pp.619-620, 2002.
DOI : 10.1016/S0168-9525(02)02793-2

G. C. Conant and K. H. Wolfe, Turning a hobby into a job: How duplicated genes find new functions, Nature Reviews Genetics, vol.26, issue.12, pp.938-950, 2008.
DOI : 10.1038/nrg2482

P. Yang, Purification of the Arabidopsis 26 S Proteasome: BIOCHEMICAL AND MOLECULAR ANALYSES REVEALED THE PRESENCE OF MULTIPLE ISOFORMS, Journal of Biological Chemistry, vol.279, issue.8, pp.6401-6413, 2004.
DOI : 10.1074/jbc.M311977200

A. J. Book, Affinity Purification of the Arabidopsis 26 S Proteasome Reveals a Diverse Array of Plant Proteolytic Complexes, Journal of Biological Chemistry, vol.285, issue.33, pp.25554-25569, 2010.
DOI : 10.1074/jbc.M110.136622

G. Gusmaroli, S. Feng, and X. W. Deng, The Arabidopsis CSN5A and CSN5B Subunits Are Present in Distinct COP9 Signalosome Complexes, and Mutations in Their JAMM Domains Exhibit Differential Dominant Negative Effects on Development, THE PLANT CELL ONLINE, vol.16, issue.11, pp.16-2984, 2004.
DOI : 10.1105/tpc.104.025999

G. Gusmaroli, P. Figueroa, G. Serino, and X. W. Deng, Role of the MPN Subunits in COP9 Signalosome Assembly and Activity, and Their Regulatory Interaction with Arabidopsis Cullin3-Based E3 Ligases, THE PLANT CELL ONLINE, vol.19, issue.2, pp.564-581, 2007.
DOI : 10.1105/tpc.106.047571

W. Huang, The Proteolytic Function of the Arabidopsis 26S Proteasome Is Required for Specifying Leaf Adaxial Identity, THE PLANT CELL ONLINE, vol.18, issue.10, pp.2479-2492, 2006.
DOI : 10.1105/tpc.106.045013

E. M. Dohmann, C. Kuhnle, and C. , Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 Signalosome Subunit 5 Is Sufficient to Cause the cop/det/fus Mutant Phenotype in Arabidopsis, THE PLANT CELL ONLINE, vol.17, issue.7, pp.1967-1978, 2005.
DOI : 10.1105/tpc.105.032870

A. J. Book, The RPN5 Subunit of the 26s Proteasome Is Essential for Gametogenesis, Sporophyte Development, and Complex Assembly in Arabidopsis, THE PLANT CELL ONLINE, vol.21, issue.2, pp.460-478, 2009.
DOI : 10.1105/tpc.108.064444

J. M. Belote and L. Zhong, Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis, Heredity, vol.144, issue.1, pp.23-31, 2009.
DOI : 10.1242/dev.004770

S. Murata, Regulation of CD8+ T Cell Development by Thymus-Specific Proteasomes, Science, vol.316, issue.5829, pp.1349-1353, 2007.
DOI : 10.1126/science.1141915

A. Shalev, Saccharomyces cerevisiae Protein Pci8p and Human Protein eIF3e/Int-6 Interact with the eIF3 Core Complex by Binding to Cognate eIF3b Subunits, Journal of Biological Chemistry, vol.276, issue.37, pp.276-34948, 2001.
DOI : 10.1074/jbc.M102161200

Z. Sha, Isolation of the Schizosaccharomyces pombe Proteasome Subunit Rpn7 and a Structure-Function Study of the Proteasome-COP9-Initiation Factor Domain, Journal of Biological Chemistry, vol.282, issue.44, pp.32414-32423, 2007.
DOI : 10.1074/jbc.M706276200

Z. Yu, Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome, Molecular Biology of the Cell, vol.22, issue.7, pp.911-920, 2011.
DOI : 10.1091/mbc.E10-08-0655

M. Kellis, B. W. Birren, and E. S. Lander, Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae, Nature, vol.428, issue.6983, pp.617-624, 2004.
DOI : 10.1038/nature02424

H. C. Yen and E. C. Chang, INT6: A Link Between the Proteasome and Tumorigenesis, Cell Cycle, vol.2, issue.2, pp.81-83, 2003.
DOI : 10.4161/cc.2.2.340

H. C. Yen, C. Espiritu, and E. C. Chang, Rpn5 Is a Conserved Proteasome Subunit and Required for Proper Proteasome Localization and Assembly, Journal of Biological Chemistry, vol.278, issue.33, pp.278-30669, 2003.
DOI : 10.1074/jbc.M302093200

I. Dunand-sauthier, Sum1, a Component of the Fission Yeast eIF3 Translation Initiation Complex, Is Rapidly Relocalized During Environmental Stress and Interacts with Components of the 26S Proteasome, Molecular Biology of the Cell, vol.13, issue.5, pp.1626-1640, 2002.
DOI : 10.1091/mbc.01-06-0301

T. H. Kim, B. H. Kim, A. Yahalom, D. A. Chamovitz, and A. G. Arnim, Translational regulation via 5 mRNA leader sequences revealed by mutational analysis of the Arabidopsis translation initiation factor subunit eIF3 h, Plant Cell, pp.16-3341, 2004.

T. Paz-aviram, A. Yahalom, and D. A. Chamovitz, Arabidopsis eIF3e interacts with subunits of the ribosome, COP9 signalosome and proteasome, Plant Signal, Behav, vol.3, pp.409-411, 2008.

A. Yahalom, Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation, The Plant Journal, vol.3, issue.2, pp.300-311, 2008.
DOI : 10.1111/j.1365-313X.2007.03347.x

Y. Halimi, COP9 signalosome subunit 7 from Arabidopsis interacts with and regulates the small subunit of ribonucleotide reductase (RNR2), Plant Molecular Biology, vol.15, issue.17, pp.77-89, 2011.
DOI : 10.1007/s11103-011-9795-8

S. F. Kwok, J. M. Staub, and X. W. Deng, Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex, Journal of Molecular Biology, vol.285, issue.1, pp.285-85, 1999.
DOI : 10.1006/jmbi.1998.2315

E. J. Bennett, J. Rush, S. P. Gygi, and J. W. Harper, Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics, Cell, vol.143, issue.6, pp.951-965, 2010.
DOI : 10.1016/j.cell.2010.11.017

M. E. Sowa, E. J. Bennett, S. P. Gygi, and J. W. Harper, Defining the Human Deubiquitinating Enzyme Interaction Landscape, Cell, vol.138, issue.2, pp.389-403, 2009.
DOI : 10.1016/j.cell.2009.04.042

. Luke-glaser, CIF-1, a Shared Subunit of the COP9/Signalosome and Eukaryotic Initiation Factor 3 Complexes, Regulates MEL-26 Levels in the Caenorhabditis elegans Embryo, Molecular and Cellular Biology, vol.27, issue.12, pp.27-4526, 2007.
DOI : 10.1128/MCB.01724-06

X. Huang, Consequences of COP9 signalosome and 26S proteasome interaction, FEBS Journal, vol.323, issue.15, pp.3909-3917, 2005.
DOI : 10.1111/j.1742-4658.2005.04807.x

C. Zhou, PCI proteins eIF3e and eIF3 m define distinct translation initiation factor 3 complexes, BMC Biol, vol.3, issue.14, 2005.

D. A. Chamovitz, Revisiting the COP9 signalosome as a transcriptional regulator, EMBO reports, vol.12, issue.4, pp.352-358, 2009.
DOI : 10.1016/S1097-2765(03)00136-9

D. A. Chamovitz, The COP9 Complex, a Novel Multisubunit Nuclear Regulator Involved in Light Control of a Plant Developmental Switch, Cell, vol.86, issue.1, pp.115-121, 1996.
DOI : 10.1016/S0092-8674(00)80082-3

A. Fukumoto, K. Tomoda, M. Kubota, J. Y. Kato, and N. Yoneda-kato, Small Jab1-containing subcomplex is regulated in an anchorage- and cell cycle-dependent manner, which is abrogated by ras transformation, FEBS Letters, vol.18, issue.5, pp.579-1047, 2005.
DOI : 10.1016/j.febslet.2004.12.076

K. Tomoda, The Jab1/COP9 signalosome subcomplex is a downstream mediator of Bcr-Abl kinase activity and facilitates cell-cycle progression, Blood, vol.105, issue.2, pp.775-783, 2005.
DOI : 10.1182/blood-2004-04-1242

M. Sharon, Symmetrical Modularity of the COP9 Signalosome Complex Suggests its Multifunctionality, Structure, vol.17, issue.1, pp.31-40, 2009.
DOI : 10.1016/j.str.2008.10.012

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

A. Dereeper, Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Research, vol.36, issue.Web Server, pp.465-469, 2008.
DOI : 10.1093/nar/gkn180

URL : https://hal.archives-ouvertes.fr/lirmm-00324099

F. Chevenet, C. Brun, A. L. Banuls, B. Jacq, and R. Christen, TreeDyn: towards dynamic graphics and annotations for analyses of trees, BMC Bioinformatics, vol.7, issue.1, p.439, 2006.
DOI : 10.1186/1471-2105-7-439

URL : https://hal.archives-ouvertes.fr/hal-00321061

Z. Peng, G. Serino, and X. W. Deng, A role of Arabidopsis COP9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3, Development, vol.128, pp.4277-4288, 2001.

G. Serino, Arabidopsis cop8 and fus4 Mutations Define the Same Gene That Encodes Subunit 4 of the COP9 Signalosome, THE PLANT CELL ONLINE, vol.11, issue.10, pp.1967-1980, 1999.
DOI : 10.1105/tpc.11.10.1967

G. Serino, Characterization of the Last Subunit of the Arabidopsis COP9 Signalosome: Implications for the Overall Structure and Origin of the Complex, THE PLANT CELL ONLINE, vol.15, issue.3, pp.719-731, 2003.
DOI : 10.1105/tpc.009092

J. M. Staub, N. Wei, and X. W. Deng, Evidence for FUS6 as a Component of the Nuclear-Localized COP9 Complex in Arabidopsis, THE PLANT CELL ONLINE, vol.8, issue.11, pp.2047-2056, 1996.
DOI : 10.1105/tpc.8.11.2047

B. Karniol, P. Malec, and D. A. Chamovitz, Arabidopsis FUSCA5 Encodes a Novel Phosphoprotein That Is a Component of the COP9 Complex, THE PLANT CELL ONLINE, vol.11, issue.5, pp.839-848, 1999.
DOI : 10.1105/tpc.11.5.839

J. Kurepa, E. A. Toh, and J. A. Smalle, 26S proteasome regulatory particle mutants have increased oxidative stress tolerance, The Plant Journal, vol.279, issue.1, pp.102-114, 2008.
DOI : 10.1111/j.1365-313X.2007.03322.x

J. Kurepa, Loss of 26S Proteasome Function Leads to Increased Cell Size and Decreased Cell Number in Arabidopsis Shoot Organs, PLANT PHYSIOLOGY, vol.150, issue.1, pp.178-189, 2009.
DOI : 10.1104/pp.109.135970

J. Smalle, Cytokinin Growth Responses in Arabidopsis Involve the 26S Proteasome Subunit RPN12, THE PLANT CELL ONLINE, vol.14, issue.1, pp.17-32, 2002.
DOI : 10.1105/tpc.010381

V. Jain, W. Kaiser, and S. C. Huber, Cytokinin Inhibits the Proteasome-Mediated Degradation of Carbonylated Proteins in Arabidopsis Leaves, Plant and Cell Physiology, vol.49, issue.5, pp.843-852, 2008.
DOI : 10.1093/pcp/pcn060

Y. Sonoda, Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit, The Plant Journal, vol.45, issue.1, pp.68-78, 2009.
DOI : 10.1111/j.1365-313X.2009.03932.x

M. Ueda, Arabidopsis RPT2a Encoding the 26S Proteasome Subunit is Required for Various Aspects of Root Meristem Maintenance, and Regulates Gametogenesis Redundantly with its Homolog, RPT2b, Plant and Cell Physiology, vol.52, issue.9, pp.1628-1640, 2011.
DOI : 10.1093/pcp/pcr093

T. Sakamoto, 26S Proteasome Subunits RPT2a and RPT5a Are Crucial for Zinc Deficiency-Tolerance, Bioscience, Biotechnology, and Biochemistry, vol.25, issue.3, pp.561-567, 2011.
DOI : 10.1016/j.abb.2008.01.010

E. D. Brenner, P. Feinberg, S. Runko, and G. M. Coruzzi, A mutation in the Proteosomal Regulatory Particle AAA-ATPase-3 in Arabidopsis impairs the light-specific hypocotyl elongation response elicited by a glutamate receptor agonist, BMAA, Plant Molecular Biology, vol.279, issue.8, pp.70-523, 2009.
DOI : 10.1007/s11103-009-9489-7

J. L. Gallois, The Arabidopsis Proteasome RPT5 Subunits Are Essential for Gametophyte Development and Show Accession-Dependent Redundancy, THE PLANT CELL ONLINE, vol.21, issue.2, pp.442-459, 2009.
DOI : 10.1105/tpc.108.062372

S. Wang, J. Kurepa, and J. A. Smalle, The Arabidopsis 26S Proteasome Subunit RPN1a is Required for Optimal Plant Growth and Stress Responses, Plant and Cell Physiology, vol.50, issue.9, pp.1721-1725, 2009.
DOI : 10.1093/pcp/pcp105

V. Brukhin, J. Gheyselinck, V. Gagliardini, P. Genschik, and U. Grossniklaus, The RPN1 Subunit of the 26S Proteasome in Arabidopsis Is Essential for Embryogenesis, THE PLANT CELL ONLINE, vol.17, issue.10, pp.2723-2737, 2005.
DOI : 10.1105/tpc.105.034975

J. Smalle, The Pleiotropic Role of the 26S Proteasome Subunit RPN10 in Arabidopsis Growth and Development Supports a Substrate-Specific Function in Abscisic Acid Signaling, THE PLANT CELL ONLINE, vol.15, issue.4, pp.965-980, 2003.
DOI : 10.1105/tpc.009217