N. Calosci, Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins, Proceedings of the National Academy of Sciences, vol.105, issue.49, pp.19241-19246, 2008.
DOI : 10.1073/pnas.0804774105

C. Chi, A conserved folding mechanism for PDZ domains, FEBS Letters, vol.4, issue.6, pp.1109-1113, 2007.
DOI : 10.1016/j.febslet.2007.02.011

J. Clarke, E. Cota, S. Fowler, and S. Hamill, Folding studies of immunoglobulin-like ??-sandwich proteins suggest that they share a common folding pathway, Structure, vol.7, issue.9, pp.1145-1153, 1999.
DOI : 10.1016/S0969-2126(99)80181-6

C. Friel, A. Capaldi, and S. Radford, Structural Analysis of the Rate-limiting Transition States in the Folding of Im7 and Im9: Similarities and Differences in the Folding of Homologous Proteins, Journal of Molecular Biology, vol.326, issue.1, pp.293-305, 2003.
DOI : 10.1016/S0022-2836(02)01249-4

J. Martínez and L. Serrano, The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved, Nat Struct Biol, vol.6, pp.1010-1016, 1999.

D. Riddle, Experiment and theory highlight role of native state topology in SH3 folding, Nat Struct Biol, vol.6, pp.1016-1024, 1999.

C. Travaglini-allocatelli, S. Gianni, and M. Brunori, A common folding mechanism in the cytochrome family, Trends in Biochemical Sciences, vol.29, issue.10, pp.535-541, 2004.
DOI : 10.1016/j.tibs.2004.08.004

C. Travaglini-allocatelli, Exploring the Cytochrome c Folding Mechanism: CYTOCHROME c552 FROM THERMUS THERMOPHILUS FOLDS THROUGH AN ON-PATHWAY INTERMEDIATE, Journal of Biological Chemistry, vol.278, issue.42, pp.41136-41140, 2003.
DOI : 10.1074/jbc.M303990200

C. Travaglini-allocatelli, Y. Ivarsson, P. Jemth, and S. Gianni, Folding and stability of globular proteins and implications for function, Current Opinion in Structural Biology, vol.19, issue.1, pp.3-7, 2009.
DOI : 10.1016/j.sbi.2008.12.001

A. Zarrine-afsar, S. Larson, and A. Davidson, The family feud: do proteins with similar structures fold via the same pathway?, Current Opinion in Structural Biology, vol.15, issue.1, pp.42-49, 2005.
DOI : 10.1016/j.sbi.2005.01.011

D. Baker, A surprising simplicity to protein folding, Nature, vol.405, issue.6782, pp.39-42, 2000.
DOI : 10.1038/35011000

P. Alexander, The design and characterization of two proteins with 88% sequence identity but different structure and function, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.11963-11968, 2007.
DOI : 10.1073/pnas.0700922104

Y. He, Y. Chen, A. P. Bryan, P. Orban, and J. , NMR structures of two designed proteins with high sequence identity but different fold and function, Proceedings of the National Academy of Sciences, vol.105, issue.38, pp.14412-14417, 2008.
DOI : 10.1073/pnas.0805857105

A. Morrone, The Denatured State Dictates the Topology of Two Proteins with Almost Identical Sequence but Different Native Structure and Function, Journal of Biological Chemistry, vol.286, issue.5, pp.3863-3872, 2011.
DOI : 10.1074/jbc.M110.155911

URL : https://hal.archives-ouvertes.fr/pasteur-00982071

P. Alexander, A minimal sequence code for switching protein structure and function, Proceedings of the National Academy of Sciences, vol.106, issue.50, pp.21149-21154, 2009.
DOI : 10.1073/pnas.0906408106

A. Fersht, A. Matouschek, and L. Serrano, The folding of an enzyme, Journal of Molecular Biology, vol.224, issue.3, pp.771-782, 1992.
DOI : 10.1016/0022-2836(92)90561-W

A. Fersht and S. Sato, ??-Value analysis and the nature of protein-folding transition states, Proceedings of the National Academy of Sciences, vol.101, issue.21, pp.7976-7981, 2004.
DOI : 10.1073/pnas.0402684101

C. Geierhaas, X. Salvatella, J. Clarke, and M. Vendruscolo, Characterisation of transition state structures for protein folding using 'high', 'medium' and 'low' ??-values, Protein Engineering Design and Selection, vol.21, issue.3, pp.215-222, 2008.
DOI : 10.1093/protein/gzm092

S. Gianni, Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain, Nature Structural & Molecular Biology, vol.30, issue.12, pp.1431-1437, 2010.
DOI : 10.1038/nsmb.1956

Y. Ivarsson, C. Travaglini-allocatelli, M. Brunori, and S. Gianni, Engineered Symmetric Connectivity of Secondary Structure Elements Highlights Malleability of Protein Folding Pathways, Journal of the American Chemical Society, vol.131, issue.33, pp.11727-11733, 2009.
DOI : 10.1021/ja900438b

A. Morrone, GB1 Is Not a Two-State Folder: Identification and Characterization of an On-Pathway Intermediate, Biophysical Journal, vol.101, issue.8, pp.1-8, 2011.
DOI : 10.1016/j.bpj.2011.09.013

URL : https://hal.archives-ouvertes.fr/pasteur-00982098

M. Parker, J. Spencer, and A. Clarke, An Integrated Kinetic Analysis of Intermediates and Transition States in Protein Folding Reactions, Journal of Molecular Biology, vol.253, issue.5, pp.771-786, 1995.
DOI : 10.1006/jmbi.1995.0590

G. Wildegger and T. Kiefhaber, Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate, Journal of Molecular Biology, vol.270, issue.2, pp.294-304, 1997.
DOI : 10.1006/jmbi.1997.1030

V. Abkevich, A. Gutin, and E. Shakhnovich, Specific Nucleus as the Transition State for Protein Folding: Evidence from the Lattice Model, Biochemistry, vol.33, issue.33, pp.10026-10036, 1994.
DOI : 10.1021/bi00199a029

L. Itzhaki, D. Otzen, and A. Fersht, The Structure of the Transition State for Folding of Chymotrypsin Inhibitor 2 Analysed by Protein Engineering Methods: Evidence for a Nucleation-condensation Mechanism for Protein Folding, Journal of Molecular Biology, vol.254, issue.2, pp.260-288, 1995.
DOI : 10.1006/jmbi.1995.0616

M. Lindberg and M. Oliveberg, Malleability of protein folding pathways: a simple reason for complex behaviour, Current Opinion in Structural Biology, vol.17, issue.1, pp.21-29, 2007.
DOI : 10.1016/j.sbi.2007.01.008

E. Haglund, M. Lindberg, and M. Oliveberg, Changes of Protein Folding Pathways by Circular Permutation: OVERLAPPING NUCLEI PROMOTE GLOBAL COOPERATIVITY, Journal of Biological Chemistry, vol.283, issue.41, pp.27904-27915, 2008.
DOI : 10.1074/jbc.M801776200

V. Munoz and L. Serrano, Development of the multiple sequence approximation within the AGADIR model of ??-helix formation: Comparison with Zimm-Bragg and Lifson-Roig formalisms, Biopolymers, vol.34, issue.5, pp.495-509, 1997.
DOI : 10.1002/(SICI)1097-0282(19970415)41:5<495::AID-BIP2>3.0.CO;2-H

J. Bryngelson, J. Onuchic, N. Socci, and P. Wolynes, Funnels, pathways, and the energy landscape of protein folding: A synthesis, Proteins: Structure, Function, and Genetics, vol.90, issue.3, pp.167-195, 1995.
DOI : 10.1002/prot.340210302

A. Fersht, From the first protein structures to our current knowledge of protein folding: delights and scepticisms, Nature Reviews Molecular Cell Biology, vol.74, issue.8, pp.650-654, 2008.
DOI : 10.1038/nrm2446

J. Kubelka, Sub-microsecond Protein Folding, Journal of Molecular Biology, vol.359, issue.3, pp.546-553, 2006.
DOI : 10.1016/j.jmb.2006.03.034

A. Fersht, Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications., Proceedings of the National Academy of Sciences, vol.92, issue.24, pp.10869-10873, 1995.
DOI : 10.1073/pnas.92.24.10869

V. Munoz, P. Thompson, J. Hofrichter, and W. Eaton, Folding dynamics and mechanism of beta-hairpin formation, Nature, vol.390, issue.6656, pp.196-199, 1997.
DOI : 10.1038/36626

M. Silow and M. Oliveberg, Transient aggregates in protein folding are easily mistaken for folding intermediates, Proceedings of the National Academy of Sciences, vol.94, issue.12, pp.6084-6086, 1997.
DOI : 10.1073/pnas.94.12.6084

M. Santoro and D. Bolen, Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl .alpha.-chymotrypsin using different denaturants, Biochemistry, vol.27, issue.21, pp.8063-8068, 1988.
DOI : 10.1021/bi00421a014