R. Maviglia, R. Nestorini, and M. Pennisi, Role of Old Antibiotics in Multidrug Resistant Bacterial Infections, Current Drug Targets, vol.10, issue.9, pp.895-905, 2009.
DOI : 10.2174/138945009789108846

M. T. Osterholm, Emerging Infectious Diseases, Postgraduate Medicine, vol.43, issue.5, pp.15-16, 1996.
DOI : 10.3810/pgm.1996.11.105

H. G. Boman, Antibacterial peptides: basic facts and emerging concepts, Journal of Internal Medicine, vol.2, issue.3, pp.197-215, 2003.
DOI : 10.1038/415389a

L. Steinstraesser, U. Kraneburg, F. Jacobsen, and S. , Host defense peptides and their antimicrobial-immunomodulatory duality, Immunobiology, vol.216, issue.3, pp.322-333, 2011.
DOI : 10.1016/j.imbio.2010.07.003

A. T. Yeung, S. L. Gellatly, and R. E. Hancock, Multifunctional cationic host defence peptides and their clinical applications, Cellular and Molecular Life Sciences, vol.1798, issue.13, pp.2161-2176, 2011.
DOI : 10.1007/s00018-011-0710-x

N. Mookherjee and R. E. Hancock, Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections, Cellular and Molecular Life Sciences, vol.64, issue.7-8, pp.922-933, 2007.
DOI : 10.1007/s00018-007-6475-6

R. E. Hancock, Cationic peptides: effectors in innate immunity and novel antimicrobials, The Lancet Infectious Diseases, vol.1, issue.3, pp.156-164, 2001.
DOI : 10.1016/S1473-3099(01)00092-5

L. M. Gottler and A. Ramamoorthy, Structure, membrane orientation, mechanism, and function of pexiganan ??? A highly potent antimicrobial peptide designed from magainin, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.8, pp.1680-1686, 2009.
DOI : 10.1016/j.bbamem.2008.10.009

J. L. Imler and P. Bulet, Antimicrobial Peptides in Drosophila: Structures,Activities and Gene Regulation, Chem. Immunol. Allergy, vol.86, pp.1-21, 2005.
DOI : 10.1159/000086648

URL : https://hal.archives-ouvertes.fr/hal-00286210

M. Simmaco, G. Mignogna, and D. Barra, Antimicrobial peptides from amphibian skin: What do they tell us?, Biopolymers, vol.133, issue.6, pp.435-450, 1998.
DOI : 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8

V. Erspamer, Bioactive secretions of the amphibian integument, Amphibian Biology, pp.395-414, 1994.

R. E. Hancock and R. Lehrer, Cationic peptides: a new source of antibiotics, Trends in Biotechnology, vol.16, issue.2, pp.82-88, 1998.
DOI : 10.1016/S0167-7799(97)01156-6

H. Jenssen, P. Hamill, and R. E. Hancock, Peptide Antimicrobial Agents, Clinical Microbiology Reviews, vol.19, issue.3, pp.491-511, 2006.
DOI : 10.1128/CMR.00056-05

P. N. Domadia, A. Bhunia, A. Ramamoorthy, and S. Bhattacharjya, Structure, Interactions, and Antibacterial Activities of MSI-594 Derived Mutant Peptide MSI-594F5A in Lipopolysaccharide Micelles: Role of the Helical Hairpin Conformation in Outer-Membrane Permeabilization, Journal of the American Chemical Society, vol.132, issue.51, pp.132-18417, 2010.
DOI : 10.1021/ja1083255

]. A. Bhunia, A. Ramamoorthy, and S. Bhattacharjya, Helical Hairpin Structure of a Potent Antimicrobial Peptide MSI-594 in Lipopolysaccharide Micelles by NMR Spectroscopy, Chemistry - A European Journal, vol.24, issue.9, pp.2036-2040, 2009.
DOI : 10.1002/chem.200802635

F. Porcelli, B. Buck, D. K. Lee, K. J. Hallock, A. Ramamoorthy et al., Structure and Orientation of Pardaxin Determined by NMR Experiments in Model Membranes, Journal of Biological Chemistry, vol.279, issue.44, pp.279-45815, 2004.
DOI : 10.1074/jbc.M405454200

A. Ramamoorthy, D. K. Lee, T. Narasimhaswamy, and R. P. Nanga, Cholesterol reduces pardaxin's dynamics???a barrel-stave mechanism of membrane disruption investigated by solid-state NMR, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.2, pp.1798-223, 2010.
DOI : 10.1016/j.bbamem.2009.08.012

S. Bhattacharjya and A. Ramamoorthy, Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides, FEBS Journal, vol.276, issue.22, pp.6465-6473, 2009.
DOI : 10.1111/j.1742-4658.2009.07357.x

H. G. Boman, B. Agerberth, and A. Boman, Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine, Infect. Immun, pp.61-2978, 1993.

K. A. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nature Reviews Microbiology, vol.92, issue.3, pp.238-250, 2005.
DOI : 10.1038/nrmicro1098

A. Patrzykat, C. L. Friedrich, L. Zhang, V. Mendoza, and R. E. Hancock, Sublethal Concentrations of Pleurocidin-Derived Antimicrobial Peptides Inhibit Macromolecular Synthesis in Escherichia coli, Antimicrobial Agents and Chemotherapy, vol.46, issue.3, pp.605-614, 2002.
DOI : 10.1128/AAC.46.3.605-614.2002

E. Podda, M. Benincasa, S. Pacor, F. Micali, M. Mattiuzzo et al., Dual mode of action of Bac7, a proline-rich antibacterial peptide, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1760, issue.11, pp.1732-1740, 2006.
DOI : 10.1016/j.bbagen.2006.09.006

M. R. Yeaman and N. Y. Yount, Mechanisms of Antimicrobial Peptide Action and Resistance, Pharmacological Reviews, vol.55, issue.1, pp.27-55, 2003.
DOI : 10.1124/pr.55.1.2

T. Koprivnjak and A. , Bacterial resistance mechanisms against host defense peptides, Cellular and Molecular Life Sciences, vol.71, issue.13, pp.2243-2254, 2011.
DOI : 10.1007/s00018-011-0716-4

J. M. Conlon, Structural diversity and species distribution of host-defense peptides in frog skin secretions, Cellular and Molecular Life Sciences, vol.3, issue.13, pp.2303-2315, 2011.
DOI : 10.1007/s00018-011-0720-8

M. L. Mangoni, Temporins, anti-infective peptides with expanding properties, Cellular and Molecular Life Sciences, vol.63, issue.9, pp.1060-1069, 2006.
DOI : 10.1007/s00018-005-5536-y

M. L. Mangoni and Y. Shai, Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.8, pp.1610-1619, 2009.
DOI : 10.1016/j.bbamem.2009.04.021

URL : http://doi.org/10.1016/j.bbamem.2009.04.021

A. C. Rinaldi, M. L. Mangoni, A. Rufo, C. Luzi, D. Barra et al., Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles, Biochemical Journal, vol.368, issue.1, pp.368-91, 2002.
DOI : 10.1042/bj20020806

M. L. Mangoni and Y. Shai, Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action, Cellular and Molecular Life Sciences, vol.27, issue.13, pp.2267-2280, 2011.
DOI : 10.1007/s00018-011-0718-2

Q. Chen, D. Wade, K. Kurosaka, Z. Y. Wang, J. J. Oppenheim et al., Temporin A and Related Frog Antimicrobial Peptides Use Formyl Peptide Receptor-Like 1 as a Receptor to Chemoattract Phagocytes, The Journal of Immunology, vol.173, issue.4, pp.173-2652, 2004.
DOI : 10.4049/jimmunol.173.4.2652

A. Giacometti, O. Cirioni, R. Ghiselli, F. Mocchegiani, F. Orlando et al., Interaction of Antimicrobial Peptide Temporin L with Lipopolysaccharide In Vitro and in Experimental Rat Models of Septic Shock Caused by Gram-Negative Bacteria, Antimicrobial Agents and Chemotherapy, vol.50, issue.7, pp.2478-2486, 2006.
DOI : 10.1128/AAC.01553-05

A. Bhunia, P. N. Domadia, J. Torres, K. J. Hallock, A. Ramamoorthy et al., NMR Structure of Pardaxin, a Pore-forming Antimicrobial Peptide, in Lipopolysaccharide Micelles: MECHANISM OF OUTER MEMBRANE PERMEABILIZATION, Journal of Biological Chemistry, vol.285, issue.6, pp.285-3883, 2010.
DOI : 10.1074/jbc.M109.065672

Y. Rosenfeld, N. Papo, and Y. Shai, Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action, J. Biol. Chem, pp.281-1636, 2006.
DOI : 10.1074/jbc.m504327200

M. L. Mangoni, R. F. Epand, Y. Rosenfeld, A. Peleg, D. Barra et al., Lipopolysaccharide , a key molecule involved in the synergism between temporinsin inhibiting bacterial growth and in endotoxin neutralization, J. Biol. Chem, pp.22907-22917, 2008.

D. Uccelletti, E. Zanni, L. Marcellini, C. Palleschi, D. Barra et al., Anti-Pseudomonas Activity of Frog Skin Antimicrobial Peptides in a Caenorhabditis elegans Infection Model: a Plausible Mode of Action In Vitro and In Vivo, Antimicrobial Agents and Chemotherapy, vol.54, issue.9, pp.3853-3860, 2010.
DOI : 10.1128/AAC.00154-10

Y. Chen, C. T. Mant, S. W. Farmer, R. E. Hancock, M. L. Vasil et al., Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index, J. Biol. Chem, pp.280-12316, 2005.

A. Carotenuto, S. Malfi, M. R. Saviello, P. Campiglia, I. Gomez-monterrey et al., A Different Molecular Mechanism Underlying Antimicrobial and Hemolytic Actions of Temporins A and L, Journal of Medicinal Chemistry, vol.51, issue.8, pp.51-2354, 2008.
DOI : 10.1021/jm701604t

D. I. Fernandez, M. Sani, and F. Separovic, Interactions of the Antimicrobial Peptide Maculatin 1.1 and Analogues with Phospholipid Bilayers, Australian Journal of Chemistry, vol.64, issue.6, pp.798-805, 2011.
DOI : 10.1071/CH11062

E. E. Ambroggio, F. Separovic, J. H. Bowie, G. D. Fidelio, and L. A. Bagatolli, Direct Visualization of Membrane Leakage Induced by the Antibiotic Peptides: Maculatin, Citropin, and Aurein, Biophysical Journal, vol.89, issue.3, pp.89-1874, 2005.
DOI : 10.1529/biophysj.105.066589

M. R. Saviello, S. Malfi, P. Campiglia, A. Cavalli, P. Grieco et al., New Insight into the Mechanism of Action of the Temporin Antimicrobial Peptides, Biochemistry, vol.49, issue.7, pp.1477-1485, 2010.
DOI : 10.1021/bi902166d

P. Valenti, P. Visca, G. Antonini, and N. Orsi, Antifungal activity of ovotransferrin towards genus Candida, Mycopathologia, vol.441, issue.3, pp.169-175, 1985.
DOI : 10.1007/BF00447027

M. L. Mangoni, A. C. Rinaldi, A. Di-giulio, G. Mignogna, A. Bozzi et al., Structure-function relationships of temporins, small antimicrobialpeptides from amphibian skin, European Journal of Biochemistry, vol.47, issue.5, pp.1447-1454, 2000.
DOI : 10.1046/j.1432-1327.2000.01143.x

A. Makovitzki, D. Avrahami, and Y. Shai, Ultrashort antibacterial and antifungal lipopeptides, Proceedings of the National Academy of Sciences, vol.380, issue.Pt 3, pp.15997-16002, 2006.
DOI : 10.1042/BJ20031975

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635116

U. Piantini, O. W. Sorensen, and R. R. Ernst, Multiple quantum filters for elucidating NMR coupling networks, Journal of the American Chemical Society, vol.104, issue.24, pp.6800-6801, 1982.
DOI : 10.1021/ja00388a062

D. Marion and K. Wuthrich, Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H?1H spin?spin coupling constants in proteins, Biochem. Biophys. Res. Commun, pp.113-967, 1983.

L. Braunschweiler and R. R. Ernst, Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy, Journal of Magnetic Resonance (1969), vol.53, issue.3, pp.53-521, 1983.
DOI : 10.1016/0022-2364(83)90226-3

J. Jeener, B. H. Meier, P. Bachman, and R. R. Ernst, Investigation of exchange processes by two???dimensional NMR spectroscopy, The Journal of Chemical Physics, vol.137, issue.11, pp.71-4546, 1979.
DOI : 10.1063/1.432450

D. J. States, D. J. Haberkorn, and . Ruben, A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants, Journal of Magnetic Resonance (1969), vol.48, issue.2, pp.48-286, 1982.
DOI : 10.1016/0022-2364(82)90279-7

T. L. Hwang and A. J. Shaka, Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients, Journal of Magnetic Resonance, Series A, vol.112, issue.2, pp.275-279, 1995.
DOI : 10.1006/jmra.1995.1047

F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer et al., NMRPipe: A multidimensional spectral processing system based on UNIX pipes, Journal of Biomolecular NMR, vol.6, issue.3, pp.277-293, 1995.
DOI : 10.1007/BF00197809

R. Glaser, J. Harder, H. Lange, J. Bartels, E. Christophers et al., Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection, Nature Immunology, vol.32, issue.1, pp.57-64, 2005.
DOI : 10.1038/ni1142

P. Guntert, C. Mumenthaler, and K. Wuthrich, Torsion angle dynamics for NMR structure calculation with the new program Dyana, Journal of Molecular Biology, vol.273, issue.1, pp.283-298, 1997.
DOI : 10.1006/jmbi.1997.1284

J. R. Maple, U. Dinur, and A. T. Hagler, Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces, Proceedings of the National Academy of Sciences, vol.85, issue.15, pp.85-5350, 1988.
DOI : 10.1073/pnas.85.15.5350

R. Koradi, M. Billeter, and K. Wuthrich, MOLMOL: A program for display and analysis of macromolecular structures, Journal of Molecular Graphics, vol.14, issue.1, pp.51-55, 1996.
DOI : 10.1016/0263-7855(96)00009-4

E. G. Hutchinson and J. M. Thornton, PROMOTIF-A program to identify and analyze structural motifs in proteins, Protein Science, vol.3, issue.2, pp.212-220, 1996.
DOI : 10.1002/pro.5560050204

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143354

P. Unneberg, J. J. Merelo, P. Chacon, and F. Moran, SOMCD: Method for evaluating protein secondary structure from UV circular dichroism spectra, Proteins: Structure, Function, and Bioinformatics, vol.242, issue.4, pp.460-470, 2001.
DOI : 10.1002/1097-0134(20010301)42:4<460::AID-PROT50>3.0.CO;2-U

D. S. Wishart, B. D. Sykes, and F. M. Richards, The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy, Biochemistry, vol.31, issue.6, pp.1647-1651, 1992.
DOI : 10.1021/bi00121a010

N. H. Andersen, Z. Liu, and K. S. Prickett, helix in aqueous medium, FEBS Letters, vol.1, issue.1-2, pp.47-52, 1996.
DOI : 10.1016/S0014-5793(96)01279-3

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.
DOI : 10.1038/415389a

D. Pittet and R. P. Wenzel, Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths, Archives of Internal Medicine, vol.155, issue.11, pp.1177-1184, 1995.
DOI : 10.1001/archinte.155.11.1177