G. N. Tew, R. W. Scott, M. L. Klein, and W. F. Degrado, De Novo Design of Antimicrobial Polymers, Foldamers, and Small Molecules: From Discovery to Practical Applications, Accounts of Chemical Research, vol.43, issue.1, pp.30-39, 2010.
DOI : 10.1021/ar900036b

A. Opar, Bad bugs need more drugs, Nature Reviews Drug Discovery, vol.6, issue.12, pp.943-944, 2007.
DOI : 10.1038/nrd2477

A. Giuliani, G. Pirri, A. Bozzi, A. Di-giulio, M. Aschi et al., Antimicrobial peptides: natural templates for synthetic membrane-active compounds, Cellular and Molecular Life Sciences, vol.65, issue.16, pp.2450-2460, 2008.
DOI : 10.1007/s00018-008-8188-x

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.
DOI : 10.1038/415389a

R. E. Hancock and A. Rozek, Role of membranes in the activities of antimicrobial cationic peptides, FEMS Microbiology Letters, vol.206, issue.2, pp.143-149, 2002.
DOI : 10.1111/j.1574-6968.2002.tb11000.x

E. F. Haney, H. N. Hunter, K. Matsuzaki, and H. Vogel, Solution NMR studies of amphibian antimicrobial peptides: Linking structure to function?, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.8, pp.1639-1655, 2009.
DOI : 10.1016/j.bbamem.2009.01.002

M. L. Mangoni, G. Maisetta, M. Di-luca, L. Marcellini, S. Esin et al., Comparative Analysis of the Bactericidal Activities of Amphibian Peptide Analogues against Multidrug-Resistant Nosocomial Bacterial Strains, Antimicrobial Agents and Chemotherapy, vol.52, issue.1, pp.85-91, 2008.
DOI : 10.1128/AAC.00796-07

M. J. Conlon, J. Kolodziejek, and N. Nowotny, Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1696, issue.1, pp.1-14, 2004.
DOI : 10.1016/j.bbapap.2003.09.004

M. L. Mangoni, D. Fiocco, and G. Mignogna, Functional characterisation of the 1???18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta, Peptides, vol.24, issue.11, pp.1771-1777, 2003.
DOI : 10.1016/j.peptides.2003.07.029

D. Ponti, G. Mignogna, M. L. Mangoni, D. De-biase, M. Simmaco et al., Expression and activity of cyclic and linear analogues of esculentin-1, an anti-microbial peptide from amphibian skin, European Journal of Biochemistry, vol.247, issue.3, pp.921-927, 1999.
DOI : 10.1016/S0014-5793(98)01060-6

G. Diamond, N. Beckloff, A. Weinberg, and K. Kisich, The Roles of Antimicrobial Peptides in Innate Host Defense, Current Pharmaceutical Design, vol.15, issue.21, pp.2377-2392, 2009.
DOI : 10.2174/138161209788682325

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-132, 1982.
DOI : 10.1016/0022-2836(82)90515-0

. Agadir, An algorithm to predict the helical content of peptides Available at, 2011.

E. Lacroix, A. R. Viguera, and L. Serrano, Elucidating the folding problem of ??-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters, Journal of Molecular Biology, vol.284, issue.1, pp.173-191, 1998.
DOI : 10.1006/jmbi.1998.2145

V. Muñoz and L. Serrano, Development of the multiple sequence approximation within the AGADIR model of ??-helix formation: Comparison with Zimm-Bragg and Lifson-Roig formalisms, Biopolymers, vol.34, issue.5, pp.495-509, 1997.
DOI : 10.1002/(SICI)1097-0282(19970415)41:5<495::AID-BIP2>3.0.CO;2-H

V. Muñoz and L. Serrano, Elucidating the folding problem of helical peptides using empirical parameters, Nature Structural Biology, vol.31, issue.6, pp.399-409, 1994.
DOI : 10.1038/344395a0

V. Muñoz and L. Serrano, Elucidating the Folding Problem of Helical Peptides using Empirical Parameters. II???. Helix Macrodipole Effects and Rational Modification of the Helical Content of Natural Peptides, Journal of Molecular Biology, vol.245, issue.3, pp.275-296, 1995.
DOI : 10.1006/jmbi.1994.0023

V. Muñoz and L. Serrano, Elucidating the Folding Problem of Helical Peptides using Empirical Parameters. III>Temperature and pH Dependence, Journal of Molecular Biology, vol.245, issue.3, pp.297-308, 1995.
DOI : 10.1006/jmbi.1994.0024

P. Y. Chou and G. D. Fasman, Conformational parameters for amino acids in helical, ??-sheet, and random coil regions calculated from proteins, Biochemistry, vol.13, issue.2, pp.211-222, 1974.
DOI : 10.1021/bi00699a001

P. Y. Chou and G. D. Fasman, Prediction of protein conformation, Biochemistry, vol.13, issue.2, pp.222-245, 1974.
DOI : 10.1021/bi00699a002

L. Whitmore and B. A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases, Biopolymers, vol.332, issue.5, pp.392-400, 2008.
DOI : 10.1002/bip.20853

N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nature Protocols, vol.79, issue.6, pp.2876-2890, 2007.
DOI : 10.1038/nprot.2006.202

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728378

K. Wuthrich, NMR of proteins and nucleic acids, 1986.

M. Simmaco, G. Mignogna, and D. Barra, Antimicrobial peptides from amphibian skin: What do they tell us?, Biopolymers, vol.133, issue.6, pp.435-450, 1998.
DOI : 10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8

A. Jasanoff and A. Fersht, Quantitative Determination of Helical Propensities from Trifluoroethanol Titration Curves, Biochemistry, vol.33, issue.8, pp.2129-2135, 1994.
DOI : 10.1021/bi00174a020

D. S. Wishart, B. D. Sykes, and F. M. Richards, The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy, Biochemistry, vol.31, issue.6, pp.1647-1651, 1992.
DOI : 10.1021/bi00121a010

D. S. Wishart, B. D. Sykes, and F. M. Richards, Relationship between nuclear magnetic resonance chemical shift and protein secondary structure, Journal of Molecular Biology, vol.222, issue.2, pp.311-333, 1991.
DOI : 10.1016/0022-2836(91)90214-Q

. Expasy, Bioinformatic Resource Portal Available at, 2011.