. Methoxy-n-, 1-naphthalenamine (4q) 4- Methoxy-1-naphthalenamine 31 and 4-methoxy-1-bromobenzene; 21 h; ethyl acetate/n-hexane 1:1; 96%; oil. IR ? 3380 (NH) cm ?1 . 1 H NMR (CDCl 3 ) ? 3, p.90

C. , H. , and N. N. -1h, Anal-Iodo-2-methoxyphenyl)-N-(4-methoxy)-1-naphthylamine (4r). 4-Methoxy-1-naphthalenamine 31 and 2,4-diiodoanisole; 48 h; flash chromatography ethyl acetate/n-hexane 1:20; 18%; oil, 51?7.58 IR ? 3390 (NH) cm ?1 . 1 H NMR (CDCl 3 ) ? 3.95 and 4.03 (2s, 6H, CH 3 ) benzene C3?H), 6.78 (d, 1H, J m = 2.0 Hz, benzene C6?H), pp.356182-356189

. Hz, 50 (m, 2H, naphthalene C6?H and C7?H), 7.92 and 8, pp.5-8

H. C. Anal, N. , I. 1h, and J. =. , 4-Methoxy-1-naphthalenamine 31 (9.1 mmol) and methyl 2-methoxy-5-bromobenzoate using (±) BINAP (0.76 mmol) Pd(OAc) 2 (0.51 mmol); 120 °C; 24 h; ethyl acetate/n-hexane 1:1; 97%; oil m, 2H, naphthalene H) Methyl 2-[(2-Methoxy-1-naphthyl)amino]benzoate (5c). 2-Me- thoxy-1-naphthalenamine 32 and methyl-2-bromobenzoate; 15.5 h (CO) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 3, 1695 (CO) cm ?1 . 1 H NMR (CDCl 3 ) ? 3.88 (2s, 3H, CH 3 ), 3.89 (s, 3H, OCH 3 ), 4.04 (s, 3H, OCH 3 ), 5.60 (s broad, 1H, NH) 3 ), 3.89 (s, 3H, CH 3 ), 6.09 (m, 1H, benzene H), 6.66 (m, 1H, benzene H), 7.18 (m, 1H, naphthalene H), 7.35?7.45 (m, 2H, benzene H and naphthalene H), 7.57 (m, 1H, naphthalene H), 7.68 (m, 1H, benzene H), 7.88?7.95 (m, 3H, naphthalene H), 9.17 (s broad, 1H, NH). Anal. (C 19 H 17 NO 3 ) C, H, N. (1-Methoxy-2-naphthyl)phenylamine (6d). 1-Methoxy-2-naphtha- lenamine 33 and bromobenzene, p.1681, 0998.

5. °c-1h, 1. , and J. =. 2h, 1650 (CO) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 4.01 (s, 3H, CH 3, pp.3400-3000

C. C. Hz, H. , and N. , 20 (m, 1H, naphthalene H), 8.54 (s broad, 1H, NH) Anal, pp.2-5

. Hz, 1. C5?hm, H. C. , H. , and N. , 59 (s broad, 1H, NH), 12.32 (s broad, 1H, COOH) Anal General Procedure for the Synthesis of Compounds 4g,i?l, 5a,b, 6a?c, 7a, 8a, and 9a. A solution of the proper N-phenyl-1- naphthalenamine derivative 4m, pp.8-9

1. , J. =. 1h, and J. =. , Anal. (C 16 H 13 NO) C, H, N. 4-(4-Hydroxy-1-naphthylamino)benzoic Acid (4i). 4o; rt; 15 h; ethyl acetate/n-hexane 9:2; 45%; 214?217 °C; toluene, 50?7.57 IR ? 3360 (OH, NH), 2800 (COOH) cm ?1 . 1 H NMR Hz, naphthalene H), 7.50 (m, 2H, naphthalene H) 1H, naphthalene H), 8.45 (s broad, 1H, NH), 10.20 (s broad, 1H, OH), 12.15 (s broad, 1H, COOH). Anal. (C 17 H 13 NO 3 ) C, H, N. Methyl 4-(4-Hydroxy-1-naphthylamino)benzoate (4j). 4o; ?45 °C, p.502592

7. , H. , H. , N. 2h, and . Oh-)-1h, Anal. (C 16 H 13 NO 2 ) C, H, N. 2-Hydroxy-5-(4-hydroxy-1-naphthylamino)benzoic Acid (4l). 4t; rt; 15 h; ethyl acetate; 17%; 175 °C (dec) IR ? 3350, 55?7.00 7.95?8.13 (m, 2H, naphthalene H), 8.67 and 9, pp.7-38

B. Hz, 1. C3?hd, 1. , 1. , J. =. 3h et al., Anal. (C 17 H 13 NO 4 ) C, H, N. 2-(2-Hydroxy-1-naphthylamino)benzoic Acid (5a) and Methyl 2-(2-Hydroxy-1-naphthylamino)benzoate (5b). 5c; rt; 23 min, Hz, naphthalene H), 7.20 (d, 1H, J m = 2.7 Hz, benzene C6? H), 7.44?7.49 (m, 2H, naphthalene C6?H and C7?H), 7.99 (m, 1H 1659 (CO) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 6.09 (m, 1H, benzene H), 6.62 (m, 1H, benzene H), 7.14 (m, 1H, naphthalene H), 7.28?7.31 (m, 2H, naphthalene H), 7.39 (m, 1H benzene H), 7.62 (m, 1H, benzene H), p.829775, 2005.

. Anal, C 18 H 15 NO 3 ) C, H, N. 1-Hydroxy-N-phenylnaphthalen-2-amine (6a). 6d; ?45 °C

2. Minm, 11 (m, 1H, naphthalene H) Anal. (C 16 H 13 NO) C, H, N. 4-(1-Hydroxy-2-naphthylamino)benzoic Acid (6b) and Methyl 4-(1-Hydroxy-2-naphthylamino)benzoate (6c). 6f; rt; 35 min; ethyl acetate/n-hexane 1:1. 6b: 45%; 210 °C (dec); methanol Anal, >300 °C. IR ? 3150 (NH and OH) cm ?1 . 1 H NMR 4H, benzene H and naphthalene H), 7.77 (m, 1H, naphthalene H) IR ? 3426 (OH and COOH)), 7.33?7.36 (m, 1H, naphthalene H), 7.42?7.50 (m, 3H, naphthalene H), 7.74?7.77 (m, 2H, benzene C3?H and C5?H), 7.84?7.86 (m, 1H, naphthalene H), 8.18 (s broad, 1H, NH), 8.19?8.21 (m, 1H, naphthalene H), 9.40 (s broad, 1H, OH), pp.6-81

?. °c, ethyl acetate/n-hexane 1:2. After isolation the compound 7a rapidly degraded so that no analytical and structural data are available

?. Abbreviations and U. Cr, Congo Red; IL, interleukin; ABBB, alizarin blue-black B

. Tht, M. Chen, L. M. Billings, S. Oddo, K. N. Green et al., tris(dibenzylideneacetone)dipalladium; DPEphos, bis(2-diphenylphosphinophenyl) ether ? REFERENCES (1) Alzehimer's Disease International: London The Alzheimer's plaques, tangles and memory deficits may have a common origin Part II: therapeutic rationale Intraneuronal A? causes the onset of early Alzheimer's diseaserelated cognitive deficits in transgenic mice Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease In vivo amyloid imaging in Alzheimer's disease Imaging technology for neurodegenerative diseases: progress toward detection of specific pathologies, World Alzehimer Report Front. Biosci. Neuron J. Neurosci. Neuroradiology Arch. Neurol, vol.2, issue.4667, pp.2-32, 1998.

C. L. Masters, K. Imaginem-oblivionis-iverfeldt, S. I. Walaas, P. R. Greengard, K. J. Barnham et al., A. 8-Amyloid neurotoxicity requires fibril formation and is inhibited by Congo red On the structural definition of amyloid fibrils and other polypeptides aggregates Altered processing of Alzheimer amyloid precursor protein in response to neuronal degeneration Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics Alzheimer's disease: from pathogenesis to disease-modifying approaches, Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 12243?12247. (9) Frandrich, M13) Glabe, C. C. Amyloid accumulation and pathogensis of, pp.4146-4150, 1993.
URL : https://hal.archives-ouvertes.fr/hal-01512577

N. Quattrocchi and F. Nicotra, Beta amyloid aggregation inhibitors: small molecules and candidate drugs for therapy of Alzehimer's disease

M. N. Sabbagh, D. Galasko, L. J. Thal, J. Y. Rogers, D. K. Lahiri et al., Amyloid-beta and treatment opportunities for Alzheimer's disease. J. Alzheimer's Dis Metal and inflammatory target for Alzheimer's disease Immunotherapy for Alzheimer's disease Small molecules inhibitors of A? assembly The role of side-chain interactions in the early steps of aggregation: molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35, Curr. Med. Chem. Curr. Drug Targets Lancet Neurol Amyloid 185?197. J, vol.17, issue.14, 2000.

R. D. Hills, . Jr, C. L. Brooks, . Iii, M. Covertino et al., Hydrophobic cooperativity as a mechanism for amyloid nucleation10-Anthraquinone hinders beta-aggregation: How does a small molecule interfere with Abeta-peptide amyloid fibrillation? Protein Sci Consensus features in amyloid fibrils: sheet?sheet recognition via a (polar or nonpolar) zipper structure Mechanism of CNS drugs and their combinations for Alzheimer's disease Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer ?(1?40) amyloid fibrille (25) Le Vine, H., III. Thioflavin T. interaction with synthetic Alzheimer's disease ?-amyloid peptide: detection of amyloid aggregation in solution, Proc. Natl. Acad. Sci 241?248. (24) Le Vine, H., III. Investigation of the interaction of cardiotoxic anticancer agents using the fetal mouse heart organ culture system. Invest. New Drugs, pp.792-800, 1986.

R. K. Averinemi, M. S. Reddy, N. Udupa, K. Matsui, M. Mishima et al., A study of rivastigmine liposomes for delivery into the brain through intranasal route, Acta Pharm, vol.58, pp.287-297, 2008.

W. P. Mcnally, W. F. Pool, M. W. Sinz, P. Dehart, D. F. Ortwine et al., Distribution of tacrine and metabolites in rat brain and plasma after single-and multiple-dose regimens. Evidence for accumulation of tacrine in brain tissue Photosubstitution of 1-methoxy-4-nitronaphthalene with amine nucleophiles: dual pathways, Absorption Drug Metab. Dispos. Drug Metab. Dispos. J. Org. Chem, vol.27, issue.24, pp.628-633, 1987.

A. M. Ismaiel, M. Titeler, R. A. Lyon, P. N-minetti, and R. Di-santo, Phthalimidoalkyl) derivatives of serotoninergic agents: a common interaction at 5- HT1A serotonin binding sites Naphthyl Derivatives Inhibitors of beta- Amyloid Aggregation. International Patent Application WO2007045593, 2007. (34) Suzuky, H.; Nonoyama, N. Nitrogen dioxide?sodium iodide as an efficient reagent for the one pot conversion of aryl iodides under non aqueous conditions, J. Med. Chem. Tetrahedron Lett, vol.32, pp.39-4533, 1989.