K. Yamataka, S. Ikeda, and H. Shinkai, Quinolone carboxylic acids as a novel monoketo acid class of human immunodeficiency virus type 1

K. Zhu, C. Dobard, S. A. Chow, and M. A. Martin, Requirement for Integrase during Reverse Transcription of Human Immunodeficiency Virus Type 1 and the Effect of Cysteine Mutations of Integrase on Its Interactions with Reverse Transcriptase, 5045?5055. (17) Engelman, pp.523-530, 2004.
DOI : 10.1128/JVI.78.10.5045-5055.2004

R. Craigie, V. Ellison, H. Abrams, T. Roe, J. Lifson et al., Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication Human immunodeficiency virus integration in a cell-free system Retroviral DNA integration directed by HIV integration protein in vitro, J. Virol. J. Virol. 2711?2715. Science, vol.69, issue.249, pp.1555-1558, 1990.

A. Engelman, H. For, C. M. Dna-integration-farnet, F. Bushman, C. M. Farnet et al., Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection, Nucleic Acids Res J. Virol. J. Virol. Proc. Natl. Acad. Sci. U.S.A. N. K.; Bukrinsky, M. I, vol.19, issue.65, pp.5382-5390, 1991.

M. Stevenson, M. Emerman, J. S. Buckman, W. J. Bosche, R. J. Gorelick et al., Human immunodeficiency virus type 1 nucleocapsid Zn(2+) fingers are required for efficient reverse transcription, initial integration processes, and protection of newly synthesized viral DNA Interactions between HIV-1 nucleocapsid protein and viral DNA may have important functions in the viral life cycle The cell cycle independence of HIV infections is not determined by known karyophilic viral elements Analysis of the viral elements required in the nuclear import of HIV-1 DNA Human cell proteins and human immunodeficiency virus DNA integration, Proc. Natl. Acad. Sci. U.S.A. J. Virol. Nucleic Acids Res PLoS Pathog. J. Virol. Front. Biosci, vol.91, issue.9, pp.18-26, 1993.

M. Belshan, M. Cai, Y. Huang, M. Caffrey, and R. Zheng, Proteomic analysis of early HIV-1 nucleoprotein complexes, J. Proteome Res, vol.12, pp.559-572, 2013.

M. Gronenborn, A. M. Goldgur, Y. Dyda, F. Hickman, A. B. Jenkins et al., Solution structure of the His12?Cys mutant of the N-terminal zinc binding domain of HIV-1 integrase complexed to cadmium, Protein Sci, 1930.

U. S. Lodi, P. J. Ernst, J. A. Kuszewski, J. Hickman, A. B. Engelman et al., Solution Structure of the DNA Binding Domain of HIV-1 Integrase, Murai, H.; Davies, D. R. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc. Natl. Acad. Sci, pp.9826-9833, 1995.
DOI : 10.1021/bi00031a002

U. S. Wang, J. Y. Ling, H. Yang, W. Craigie, and R. , Structure of a twodomain fragment of HIV-1 integrase: implications for domain organization in the intact protein, EMBO J. J. C.; Krucinski, J.; Miercke, L. J, vol.96, issue.2034, pp.7333-7343, 1999.

A. H. Tang, A. D. Leavitt, R. M. Stroud, and C. Mckee, Crystal structure of the HIV- 1 integrase catalytic core and C-terminal domains: a model for viral DNA binding, Proc. Natl. Acad. Sci. U.S.A. J.; Kessl, J. J.; Shkriabai, N.; Dar, M. J, vol.97, pp.8233-8238, 2000.

M. 3. Kvaratskhelia, N. Sluis-cremer, G. Tachedjian, R. G. Karki, Y. Tang et al., Dynamic modulation of HIV-1 integrase structure and function by cellular LEDGF protein Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design, J. Biol. Chem. Eur. J. Biochem. J. Comput.-Aided Mol. Des. E, vol.36, issue.18, pp.5103-5111, 2002.

L. Krishnan, X. Li, H. L. Naraharisetty, S. Hare, and P. Cherepanov, Retroviral intasome assembly and inhibition of DNA strand transfer, Structure-based modeling of the functional HIV-1, pp.232-236, 2010.

A. Engelman, Structural basis for the recognition between HIV-1

R. Craigie, D. R. Davies, and P. A. Rice, Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases, Science, vol.266, 1994.

L. S. Beese, T. A. Steitz, T. A. Steitz, J. A. Steitz, T. Steitz et al., Structural basis for the 3?-5? exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism A general two-metal-ion mechanism for catalytic RNA DNA polymerases: structural diversity and common mechanisms A mechanism for all polymerases Making the most of metal ions HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer Stereospecificity of reactions catalyzed by HIV-1 integrase Chemical trapping of ternary complexes of human immunodeficiency virus type 1 integrase, divalent metal, and DNA substrates containing an abasic site. Implications for the role of lysine 136 in DNA binding, Nat. Struct. Biol EMBO J. Proc. Natl. Acad. Sci. U.S.A. J. Biol. Chem. Nature Nat. Struct. Biol. Cell J. Biol. Chem. J. Biol. Chem, vol.8, issue.274, pp.302-307, 1991.

X. Zhang, K. Cowansage, T. A. Patel, M. C. Nicklaus, T. R. Burke et al., Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/ C280S), Mol. Pharmacol, vol.64, pp.600-609, 2003.

N. Neamati, Y. Pommier, I. K. Pemberton, M. Buckle, H. Buc et al., Journal of Medicinal Chemistry Perspective dx.doi.org/10 Craigie, R. HIV integrase, a brief overview from chemistry to therapeutics The metal ion-induced cooperative binding of HIV-1 integrase to DNA exhibits a marked preference for Mn(II) rather than Mg(II) Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release Making and breaking nucleic acids: two-Mg 2+ -ion catalysis and substrate specificity (51) Craigie, R. HIV integrase, a brief overview from chemistry to therapeutics 3?-Processing and strand transfer catalysed by retroviral integrase in crystallo Repair of gaps in retroviral DNA integration intermediates, vitro human immunodeficiency virus type 1 integrase assays, pp.624-633, 1021.

J. C. Kappes, A. M. Skalka, S. Carteau, C. Hoffmann, and F. Bushman, Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target HIV-1 integration in the human genome favors active genes and local hotspots, 4005?4014. (56) Schro? der) Maurin, C.; Bailly, F.; Cotelle, P. Structure?activity relationships of HIV-1 integrase inhibitors?enzyme?ligand interactions, pp.8573-8581, 1998.

A. Teran, D. Vilella, P. Felock, and D. Hazuda, The complestatins as HIV-1 integrase inhibitors. Efficient isolation, structure elucidation, and inhibitory activities of isocomplestatin, chloropeptin I, new complestatins, A and B, and acid-hydrolysis products of chloropeptin I

J. Nat, N. Jing, and X. Xu, Rational drug design of DNA oligonucleotides as HIV inhibitors, Inhibitors of human immunodeficiency virus integrase. Proc. Natl, 2001.

A. Levitzki, M. Nicklaus, J. Yung, G. Kohlhagen, Y. Pommier et al., Effects of tyrphostins, protein kinase inhibitors, on human immunodeficiency virus type 1 integrase Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds, Biochemistry Biochem. Pharmacol, vol.34, issue.48, pp.15111-15122, 1994.

Z. Debyser, E. De-clercq, W. G. Rice, Y. Pommier, T. R. Burke et al., Chicoric acid analogues as HIV-1 integrase inhibitors, J. Med. Chem, vol.42, issue.61, pp.1401-1414, 1999.

S. Massa, E. Tramontano, M. E. Marongiu, A. De-montis, P. D. La-colla et al., Geometrically and conformationally restrained cinnamoyl-compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation and molecular modeling, Pani, A. HIV-1 integrase inhibitors that block HIV-1, 1998.

R. Costi, R. Di-santo, M. Artico, S. Massa, and R. Ragno, Planning synthetic derivatives from natural products, replication in infected cells, 2003.

E. Tramomtano, P. La-colla, A. Pani, and V. Fikkert, 5-trihydroxybenzy- lidene) derivatives of cyclohexanone: novel potent HIV-1 integrase inhibitors that prevent HIV-1 multiplication in cell-based assays, 199?215. (62) Pluymers, W.; Neamati, N.; Pannecouque, p.6, 2004.

C. Marchand, T. R. Burke, . Jr, Y. Pommier, D. Schols et al., Viral entry as the primary target for the anti-HIV activity of chicoric acid and its tetra-acetyl esters, 641?648. (63) Hazuda, 2000.

J. A. Grobler, A. Espeseth, L. Gabryelski, T. Fujishita, T. Yoshinaga et al., Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells Aromatic Heterocycle Compounds Having HIV Integrase Inhibiting Activities. WO2000039086 Development of resistance against diketo derivatives of human immunodeficiency virus type 1 by progressive accumulation of integrase mutations, Science Z J. Virol, vol.287, issue.77, pp.646-650, 2000.

M. C. Nicklaus, T. R. Burke, . Jr, Y. Pommier, A. A. Johnson et al., Metal-dependent inhibition of HIV-1 integrase by {beta}-diketo acids and resistance of the soluble double-mutant (F185K/C280S) Pommier, Y. Probing HIV-1 integrase inhibitor binding sites with position-specific integrase-DNA cross-linking assays, Mol. Pharmacol. Mol. Pharmacol, vol.64, issue.71, pp.600-609, 2003.

J. L. Cole and D. J. Hazuda, HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase, 11244?11249. (69) Pommier, Y. Structural determinants for HIV-1, 2000.

Y. Pommier, T. R. Burke, . Jr, J. A. Grobler, K. A. Stillmock et al., Structure activity of 3-aryl-1,3-diketo- containing compounds as HIV-1 integrase inhibitors Scintillation proximity assays for mechanistic and pharmacological analyses of HIV- 1 integration, J. Med. Chem, vol.45, issue.47, pp.3184-3194, 2002.

A. Pani, La Colla, P. 6-Aryl-2,4-dioxo-5-hexenoic acids, novel integrase inhibitors active against HIV-1 multiplication in cell-based assays

C. Marchand and Y. Pommier, Design, synthesis and biological evaluation of heteroaryl diketohexenoic and diketobutanoic acids as HIV-1

Y. Pommier, C. Marchand, M. Andreotti, and R. Amici, Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities and mechanism of action, J. Med. Chem, vol.49, 1939.

C. Marchand, Novel quinolinonyl diketo acid derivatives as HIV-1

L. Zhuang, J. S. Wai, M. W. Embrey, T. E. Fisher, M. S. Egbertson et al., Journal of Medicinal Chemistry Perspective dx.doi.org/10 Design and synthesis of 8-hydroxy-[1,6]- naphthyridines as novel inhibitors of HIV-1 integrase in vitro and in infected cells, J. Med. Chem. J. Med. Chem. J. Med. Chem, vol.51, issue.5773, pp.4744-4750, 1021.

G. Moyer, L. J. Gabryelski, L. Jin, I. W. Chen, D. J. Hazuda et al., A series of 5-aminosubstituted 4-fluorobenzyl-8-hydroxy- [1,6]naphthyridine-7-carboxamide HIV-1 integrase inhibitors

. Med, . Chem, D. J. Lett-hazuda, S. D. Young, J. P. Guare et al., Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques, Science, vol.16, issue.305, pp.528-532, 2004.

M. K. Holloway, S. D. Young, E. P. Garvey, B. A. Johns, M. J. Gartland et al., A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase The naphthyridinone GSK364735 is a novel, potent human immunodeficiency virus type 1 integrase inhibitor and antiretroviral, Proc. Natl. Acad. Sci. U.S.A. Antimicrob. Agents Chemother A. J. G, vol.101, issue.78, pp.11233-11238, 2004.

B. Garvey, E. P. Foster, S. A. Jeffrey, J. L. Miller, and W. H. , The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: establishing the pharmacophore, Bioorg. Med. Chem

L. Johns, B. A. Weatherhead, J. G. Allen, S. H. Thompson, J. B. Garvey et al., 1,3,4-Oxadiazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 2: SAR of the C5 position, Bioorganic & Medicinal Chemistry Letters, vol.19, issue.6, pp.1807-1810, 2006.
DOI : 10.1016/j.bmcl.2009.01.089

D. Hazuda and D. P. Grandgenett, Inhibition of human immunodeficiency virus type 1 concerted integration by strand transfer inhibitors which recognize a transient structural intermediate, J. Virol, vol.81, pp.12189-12199, 2007.

A. Summa, V. Summa, V. Petrocchi, A. Matassa, V. G. Gardelli et al., integrase inhibitors: SAR around the amide moiety5- Dihydroxypyrimidine carboxamides and N-alkyl-5-hydroxypyrimidi- none carboxamides are potent, selective HIV integrase inhibitors with good pharmacokinetic profiles in preclinical speciesMK-0518): a novel integrase inhibitor for the treatment of HIV infection, 97?103. (85) Grinsztejn, pp.350-353, 2006.

R. D. Isaacs, J. L. Lennox, and E. R. Dejesus, Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial, Lancet, vol.369, issue.86, pp.1261-1269, 2007.

A. J. Rodgers, R. J. Barnard, M. D. Miller, M. J. Dinubile, B. Y. Nguyen et al., Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial, Lancet, vol.374, pp.796-806, 2009.

L. R. Gilde, H. Wan, M. D. Miller, L. A. Wenning, H. Teppler et al., Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection: results of a 48-week controlled study. J. Acquired Immune Defic. Syndr, L. R, vol.46, pp.125-133, 2007.

M. D. Miller, D. J. Hazuda, M. L. Nessly, M. J. Dinubile, R. D. Isaacs et al., Raltegravir with optimized background therapy for resistant HIV-1 infection, N. Eng. J. Med, vol.359, issue.87, 2008.

C. Piketty, D. Bollens, J. M. Molina, and G. Che?-ne, High rate of virologic suppression with raltegravir plus etravirine and darunavir/ritonavir among treatment-experienced patients infected with multidrugresistant HIV: results of the ANRS 139 TRIO trial, Clin. Infect. Dis. C, vol.49, pp.1441-1449, 2009.

V. Reliquet, G. Firtion, J. Tricoire, C. Rabaud, P. Frange et al., etravirine and darunavir combination in adolescents with multidrug-resistant virus, AIDS Mrus, J. M, vol.23, 2009.

M. J. Mugavero and M. S. Saag, Early virologic suppression with threeclass experienced patients: 24-week effectiveness in the darunavir outcomes study, 1539?1546. (d) Imaz, A.; del Saz, S, 2009.

. Raltegravir, W. Ritonavir-towner, D. Klein, H. L. Kerrigan, S. Follansbee et al., safe and successful rescue regimen for multidrug-resistant HIV-1 infection Virologic outcomes of changing enfuvirtide to raltegravir in HIV-1 patients well controlled on an enfuvirtide based regimen: 24-week results of the CHEER study, J. Acquired Immune Defic. Syndr. J. Acquired Immune Defic. Syndr. J, vol.52, issue.88, pp.382-386, 2009.

J. L. Meynard, Y. Yazdanpanah, C. Delaugerre, I. Madelaine-chambrin, J. P. Aboulker et al., Switch from enfuvirtide to raltegravir in virologically suppressed multidrug-resistant HIV-1-infected patients: a randomized open-label trial Switch from enfuvirtide to raltegravir in virologically suppressed HIV-1 infected patients: effects on level of residual viremia and quality of life De Clercq, E. A new drug combination therapy for treatmentnaive patients with HIV-1 infection, consisting of raltegravir, emtricitabine and tenofovir disoproxil fumarate, Clin. Infect. Dis. J. Clin. Virol. Journal of Medicinal Chemistry Perspective J. Med. Chem. Expert Opin. Pharmacother. J, vol.49, issue.1090, pp.1259-1267, 2009.

J. Martinez-picado, J. A. Grobler, K. Stillmock, M. D. Miller, D. J. Hazuda et al., The HIV-1 integrase genotype strongly predicts raltegravir susceptibility but not viral fitness of primary virus isolates Mechanism by which the HIV integrase activesite mutation N155H confers resistance to raltegravir. Antiviral Ther, A41. (92) (a) Malet, pp.17-25, 2008.

C. Katlama, V. Calvez, A. G. Marcelin, C. Garrido, C. De-mendoza et al., Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro Resistance to integrase inhibitors, Antimicrob. Agents Chemother Enferm. Infecc. Microbiol. Clin. E. I, vol.5293, issue.26, pp.40-46, 2008.

V. H. Faltenbacher, H. Xu, V. Michaud, R. D. Sloan, and M. A. Wainberg, HIV-1 subtype B and C integrase enzymes exhibit differential patterns of resistance to integrase inhibitors in biochemical assays, 2171?2179. (94) Delelis, O.; Malet, I.; Na, L.; Tchertanov, L.; Calvez

A. G. Marcelin, F. Subra, E. Deprez, and J. Mouscadet, The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation, 1193?1201. (95) Johnson, V. A.; Brun-Ve?zinetVe?zinet, F.; Clotet, B.; Gu? nthard, 2009.

D. R. Kuritzkes, D. Pillay, J. M. Schapiro, D. D. Richman, D. R. Langley et al., The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance (98) Klibanov, O. M. Elvitegravir, an oral HIV integrase inhibitor, for the potential treatment of HIV infection Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors, 10366?10374. (b) Taiwo, B.; Zheng, L.; Gallien, pp.13481-13488, 2008.

R. M. Matining, D. R. Kuritzkes, C. C. Wilson, B. I. Berzins, E. P. Acosta et al., ACTG A5262 team: efficacy of a nucleoside-sparing regimen of darunavir/ritonavir plus raltegravir in treatment-naive HIV-1-infected patients (ACTG A5262), AIDS, 2011.

X. Zhang, D. Rhodes, C. Marchand, Y. Pommier, and K. Shimura, Elvitegravir overcomes resistance to raltegravir induced by integrase mutation Y143, AIDS, vol.25, issue.101, pp.1175-1178, 2011.

W. Watanabe, K. Yamataka, Y. Watanabe, Y. Ohata, S. Doi et al., Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137) Biochemical analysis of HIV-1 integrase variants resistant to strand transfer inhibitors, J. Virol. J. Biol. Chem, vol.82, issue.102, pp.283-23599, 2008.

C. Wakasa-morimoto, K. W. Brown, R. Ferris, S. A. Foster, R. J. Hazen et al., In vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor, Antiviral Res Antimicrob. Agents Chemother, vol.85, issue.55104, pp.813-821, 2010.

S. Min, Pharmacokinetics and Safety of S/GSK1349572, a Next-Generation HIV Integrase Inhibitor, in Healthy Volunteers, Antimicrobial Agents and Chemotherapy, vol.54, issue.1, pp.254-258, 2010.
DOI : 10.1128/AAC.00842-09

S. Chen, M. Underwood, T. Fujiwara, S. Piscitelli, J. Lalezari et al., Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults, 1737?1745. (105) Quashie, P. K.; Mesple? de, 2011.

D. N. Singhroy, T. Fujiwara, M. R. Underwood, and M. A. Wainberg, Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second generation integrase strand transfer inhibitor dolutegravir, 2696?2705. (106) Eron

T. Hawkins, T. Fujiwara, R. Cuffe, C. Vavro, J. Santiago et al., Activity of integrase inhibitor S/ GSK9572 in subjects with HIV exhibiting raltegravir resistance: week 24 results of VIKING study The role of unintegrated DNA in HIV infection, O51, p.52, 2010.

B. Johns, A. Sato, T. Fujiwara, and W. Spreen, A Next Generation Integrase Inhibitor with Activity against Integrase Inhibitor-Resistant Clinical Isolates from Patients Experiencing Virologic Failure while on Raltegravir Therapy. Presented at the 5th International AIDS Society's Conference on HIV Pathogenesis, Cape Town, South Africa Conference Reports for NATAP, IAS/IAS_06.htm. (108), 2009.

S. Integrase-dna-complexes-hare, S. J. Smith, M. Me?tifiotme?tifiot, A. Jaxa-chamiec, Y. Pommier et al., Merck offers unique perspective on secondgeneration integrase inhibitor Structural and functional analyses of the second generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572), PK/PK_ 10.htm. (111), pp.565-572, 2008.

E. Rondelez, M. Feyaerts, A. Verheyen, K. Van-der-borght, V. Smits et al., Crossresistance profile determination of two second-generation HIV-1

O. Goethals, M. Van-ginderen, A. Vos, M. D. Cummings, and K. Van-der-borght, Physical trapping of HIV-1 synaptic complex by different structural classes of integrase strand transfer inhibitors, Biochemistry, vol.49, 2010.

R. F. Clayton and 1. , Resistance to raltegravir highlights integrase mutations at codon 148 in conferring cross-resistance to a second generation HIV-1 integrase inhibitor, Antiviral Res, vol.113, 1991.

A. Zabeida, H. Xu, M. Oliveira, D. J. Hazuda, and M. A. Wainberg, Identification of novel mutations responsible for resistance to MK- 2048, a second-generation HIV-1 integrase inhibitor, J. Virol, vol.84114, pp.9210-9216, 2010.

A. Kuhl, B. D. Oliveira, M. Xu, H. Wainberg, M. A. Delelis et al., Comparative biochemical analysis of HIV-1 subtype B and C integrase enzymes, Retrovirology, vol.6, issue.103115, 2009.

I. Integrase, (116) Highleyman, L. Early studies demonstrate potent activity and safety of experimental integrase inhibitor S/GSK1265744, J.; Maggiolo, F.; Arribas, J. R, vol.5, p.114, 2008.

P. Yeni, B. Young, J. K. Rockstroh, S. Almond, I. Song et al., Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial, DTG in Subjects with HIV Exhibiting RAL Resistance: Functional Monotherapy Results of VIKING Study Cohort II. Presented at the 18th CROI, Conference on Retroviruses and Opportunistic Infections, pp.111-118, 2011.

J. F. Mouscadet, O. Delelis, A. G. Marcelin, L. Tchertanov, J. L. Blanco et al., Abstract 691 Resistance to HIV-1 integrase inhibitors: a structural perspective. Drug Resist HIV-1 integrase inhibitor resistance and its clinical implications Drug?target residence time and its implications for lead optimization Twenty-six years of anti-HIV drug discovery: Where do we stand and where do we go? Dual inhibition: a novel promising pharmacological approach for different disease conditions, Antiviral Activity in Vitro of the INI, Dolutegravir, against Raltegravir- Resistant HIV-2 Mutants. Presented at the 19th CROI, Conference on Retroviruses and Opportunistic Infections 730?739. (121) Mehellou, Y.; De Clercq, pp.139-150, 2006.

. Pharm, B. Apsel, J. A. Blair, B. Z. Gonzalez, T. M. Nazif et al., Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases, Ishih, A. Novel rational drug design strategies with potential to revolutionize malaria chemotherapy, pp.691-699, 2008.

R. Vince, Z. Wang, R. Vince, Z. Wang, R. P. Vince et al., Synthesis of pyrimidine and quinolone conjugates as a scaffold for dual inhibitors of HIV reverse transcriptase and integrase Design and synthesis of dual inhibitors of HIV reverse transcriptase and integrase: introducing a diketoacid functionality into delavirdine, J. Med. Chem. Bioorg. Med. Chem. Lett. Bioorg. Med. Chem, vol.50, issue.16126, pp.1293-1296, 2007.

M. J. Modak, V. N. Pandey, H. P. Patel, A. Jacobo-molina, J. Ding et al., Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase (127) Di Santo, R. Diketo acids derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain, Biochemistry Biochemistry Curr. Med. Chem, vol.35, issue.18128, pp.11536-11546, 1995.

J. F. Mouscadet, C. Calmels, M. L. Andreóla, M. Witvrouw, F. Christ et al., Cotelle, P. Design, synthesis, and biological evaluation of a series of 2-hydroxyisoquinoline-1,3(2H,4H)-diones as dual inhibitors of human immunodeficiency virus type 1 integrase and the reverse transcriptase RNase H domain, J. Med. Chem. C, vol.51, pp.7717-7730, 2008.

A. Chimirri and P. Cotelle, 2-Hydroxyisoquinoline-1,3(2H,4H)-diones as inhibitors of HIV-1 integrase and reverse transcriptase RNase H domain: influence of the alkylation of position 4, Eur. J. Med. Chem, vol.46, pp.535-546, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594723

. Antimicrob, E. Agents-chemother-tramontano, F. Esposito, R. Badas, R. Di-santo et al., 6-[1-(4-Fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4- dioxo-5-hexenoic acid ethyl ester a novel diketo acid derivative which selectively inhibits the HIV-1 viral replication in cell culture and the ribonuclease H activity in vitro, Antiviral Res J. L, vol.52130, issue.651, pp.117-124, 2005.

F. F. Ammar, -(benzoylamino)thien-2- yl]-2,4-dioxobutanoic acid, J. Biol. Chem. Z, vol.278, issue.131, 2003.

R. G. Maroun, S. Fermandjian, B. P. Scottoline, S. Chow, V. Ellison et al., Unprocessed viral DNA could be the primary target of the HIV-1 integrase inhibitor raltegravir Disruption of the terminal base pairs of retroviral DNA during integration, PLoS One Genes Dev, vol.7, issue.e40223132 11, pp.371-382, 1997.

M. D. Andrake, H. Roder, and A. M. Skalka, Retroviral integrases promote fraying of viral DNA ends Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage, J. Biol. Chem. J. Virol. C, pp.65-4636, 1991.

J. Agapkina, M. Smolov, E. Zubin, J. F. Mouscadet, M. Gottikh et al., HIV-1 integrase can process a 39-end crosslinked substrate 205?211. (133) Suzuki, Y.; Craigie, R. The road to chromatin?nuclear entry of retroviruses Human cell proteins and human immunodeficiency virus DNA integration Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7, 3187?3208. (135) Masuda, T. Non-enzymatic functions of retroviral integrase: the next target for novel anti-HIV drug development. Front. Microbiol. 2011. (b) Ao, pp.187-196, 1991.

X. Yao and F. Christ, Interaction of human immunodeficiency virus type 1 integrase with cellular nuclear import receptor importin 7 and its impact on viral replication, J. Biol. Chem, vol.282, pp.13456-13467, 2007.

W. Thys, J. De-rijck, R. Gijsbers, A. Albanese, D. Arosio et al., Transportin- SR2 imports HIV into the nucleus, Curr. Biol, vol.18, pp.1192-1202, 2008.

A. Christ and F. , Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1, 6522?6533. (138) Van Maele, 2009.

Z. Debyser, Cellular co-factors of HIV-1 integration, Trends Biochem

S. Hindmarsh, P. Ridky, T. Reeves, R. Andrake, M. Skalka et al., HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro HIV-1 cDNA integration: requirement of HMG I (Y) protein for function of preintegration complexes in vitro Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5 HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells, 2994?3003. (140), pp.31-483, 1994.

K. Moreau, G. Billaud, S. Priet, J. Sire, O. Schwartz et al., The human polycomb group EED protein interacts with the integrase of human immunodeficiency virus type 1 Blocking interactions between HIV-1 integrase and cellular cofactors: an emerging antiretroviral strategy Host factors exploited by retroviruses Interactions of host proteins with the murine leukemia virus integrase Specificity of interaction of INI1/hSNF5 with retroviral integrases and its functional significance, J. Virol. Trends Pharmacol. Sci. Nat. Rev. Microbiol. Viruses J. Virol, vol.77, issue.2145146, pp.12507-12522, 2003.

K. Yuge, L. T. Chylack, . Jr, T. Shinohara, A. Engelman et al., The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1integrase An essential role for LEDGF/p75 in HIV integration/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration, 1767?1778. (152) Busschots, pp.373-381, 2000.

R. Benarous, Integrase mutants defective for interaction with LEDGF/ p75 are impaired in chromosome tethering and HIV-1 replication, J

R. Gijsbers, Z. Debyser, P. Cherepanov, Z. Y. Sun, S. Rahman et al., Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV Solution structure of the HIV-1 integrase-binding domain in LEDGF/ p75, PLoS Pathog. Nat. Struct. Mol. Biol. J J. N, vol.3, issue.12, pp.47-155, 2005.

S. Vets, K. Ronen, F. Christ, F. D. Bushman, Z. Debyser et al., LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs, PLoS Pathog. J, vol.2012, issue.8157, 1002558.

R. Gijsbers, C. Van-den-haute, M. Witvrouw, and Z. Debyser, Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus, 1886?1896. (158) De Rijck, 2006.

J. Hendrix, J. Vercammen, Y. Engelborghs, F. Christ, and Z. Debyser, Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication, J. Virol. 11498?11509. Z, vol.80159, 2006.

N. Neamati, Inhibitory profile of a LEDGF, pp.75-76

D. J. Volsky, A. Loyter, A. Friedler, and D. Jeevarajah, Mechanism of action of the HIV- 1 integrase inhibitory peptide LEDGF 361?370 Cyclic peptide inhibitors of HIV-1 integrase derived from the LEDGF/p75 protein, 260?265. (162) Hayouka, pp.8388-8395, 2010.

J. Newman, J. Martyn, J. A. Coates, N. J. Ede, P. Rea et al., Crystal structures of novel allosteric peptide inhibitors of HIV integrase identify new interactions at the LEDGF binding site, 2311?2315. (164) Desimmie, B. A.; Humbert, M.; Lescrinier, 2011.

F. Christ, Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication, Mol. Ther. J.; Busschots, K, vol.2012, issue.20165, 20642075.

F. Christ, Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75, J. Mol. Biol, vol.372, 2007.

C. Emiliani, S. Benarous, R. Debyser, Z. De-rijck, and J. , Lens epithelium derived growth factor/p75 interacts with the transposase derived DDE domain of PogZ, 11467?11477. (c) Maertens, pp.539-566, 2009.

G. N. Cherepanov, P. Engelman, A. Du, L. Zhao, Y. Chen et al., Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75, J. Cell Sci Biochem. Biophys. Res. Commun, vol.119, issue.375, pp.2563-2571, 2006.

R. Gitto, A. M. Monforte, Z. Debyser, A. Chimirri, L. De-luca et al., Pharmacophorebased discovery of small-molecule inhibitors of protein?protein interactions between HIV-1 integrase and cellular cofactor LEDGF/ p75, Chem MedChem, 2009.

F. Christ, Z. Debyser, and A. Chimirri, Small molecules targeting the interaction between HIV-1 integrase and LEDGF

B. Debnath, T. W. Sanchez, S. Odde, N. Neamati, and Y. Long, Design of HIV-1 integrase inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75: a scaffold hopping approach using salicylate and catechol groups, Bioorg. Med. Chem. 2011 J. A, vol.19, issue.170, pp.4935-4952

J. J. Deadman, Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design, PLoS One, 2012.

Y. Tang, Identification of old drugs as potential inhibitors of HIV-1 integrase?human LEDGF/p75 interaction via molecular docking, J

A. Marchand, D. Bardiot, D. Van-der-veken, N. J. Van-remoortel, B. Strelkov et al., Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication Small-molecule inhibitors of the LEDGF/p75 binding site of integrase block HIV replication and modulate integrase multimerization, Nat. Chem. Biol. Antimicrob. Agents Chemother C C, vol.6, issue.173174, pp.56-4365, 2010.

E. Malenfant, S. Mason, M. Pesant, J. J. Kessl, N. Jena et al., Inhibitors of Human Immunodeficiency Virus Replication, PCT Int. Appl. WO, vol.131350, issue.175, 2007.

L. Feng, S. De-silva, L. Wu, S. F. Le-grice, A. Engelman et al., A multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors, 16801?16811. (176) Tsiang, M.; Jones, G. S.; Niedziela-Majka

R. Sakowicz, New class of HIV-1 integrase (IN) inhibitors with a dual mode of action, 21189?21203. (177) Kessl

L. Feng, K. Musier-forsyth, R. Craigie, M. Kvaratskhelia, L. De-luca et al., FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75, Nucleic Acids Res S, pp.39-9009, 2011.

F. Morreale, Z. Debyser, and A. Chimirri, 4-[1-(4-Fluorobenzyl)-4- hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process, Antiviral Res, vol.92, issue.102?107179, p.1, 2011.

M. Zhang, J. T. Miller, S. F. Le-grice, R. T. Clubb, S. A. Chow et al., Identifying and characterizing a functional HIV-1 reverse transcriptasebinding site on integrase) Oz, I.; Avidan, O.; Hizi, A. Inhibition of the integrases of human immunodeficiency viruses type 1 and type 2 by reverse transcriptases, 557?566. (182) Oz-Gleenberg, I.; Avidan, 2002.

A. Hizi, Peptides derived from the reverse transcriptase of human immunodeficiency virus type 1 as novel inhibitors of the viral integrase

M. Kogan, J. Rappaport, and B. Roques, Inhibition of HIV-1 integrase activity by synthetic peptides derived from the HIV-1 HXB2 Pol region of the viral genome HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention, J. Biol. Chem. Bioorg. Med. Chem. Lett. Retrovirology J, vol.280, issue.8, pp.5199-5202, 2005.

J. F. Mouscadet, I. O. Gleenberg, A. Herschhorn, A. Hizi, S. Bouaziz et al., Vpr stimulates HIV-1 IN-mediated homologous strand transfer of mini-viral DNA Inhibition of the activities of reverse transcriptase and integrase of human immunodeficiency virus type-1 by peptides derived from the homologous viral protein R (Vpr) NMR structure of the HIV-1 regulatory protein VPR, 1230?1243. (187) Morellet, pp.31-2694, 2003.

J. Rosenbluh, Z. Hayouka, S. Loya, A. Levin, A. Armon-omer et al., Interaction between HIV-1 Rev and integrase proteins: a basis for the development of anti-HIV peptides (191) Grewe, B.; Uberla, K. The human immunodeficiency virus type 1 Rev protein: menage a trois during the early phase of the lentiviral replication cycle, Peptidic HIV integrase inhibitors derived from HIV gene products: structure?activity relationship studies, pp.15743-15753, 0192.

A. Friedler, A. Loyter, H. Benyamini, A. Loyter, A. Friedler et al., Novel regulation of HIV-1 replication and pathogenicity: rev inhibition of integration A structural model of the HIV-1 Rev-integrase complex: the molecular basis of integrase regulation by Rev, Protein Eng., Des. Sel. Biochem. Biophys. Res. Commun. Hayouka Z.; Rosenbluh, J, vol.22, issue.416, pp.753-763, 0194.

A. Friedler, A. Levin, Z. Hayouka, M. Helfer, R. Brack-werner et al., Peptides derived from HIV-1 Rev inhibit HIV-1 integrase in a shiftide mechanism Peptides derived from HIV-1 integrase that bind Rev stimulate viral genome integration, Biopolymers PLoS One, vol.90, issue.4, pp.481-487, 0196.

S. Fermandjian, Peptide inhibitors of HIV-1 integrase dissociate the enzyme oligomers, Biochemistry, vol.40, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00284952

L. Zhao and J. Chmielewski, Journal of Medicinal Chemistry Perspective dx.doi.org/10, Bioorg. Med. Chem. Lett. J. Med. Chem, vol.13, issue.57, pp.539-566, 0198.

T. R. Burke, . Jr, C. H. Borchers, and N. Neamati, Discovery of a smallmolecule HIV-1 integrase inhibitor-binding site, Proc. Natl. Acad. Sci

J. Todd, T. Cai, N. Pagratis, R. Sakowicz, and R. Geleziunas, Affinities between the binding partners of the HIV-1 integrase dimer-lens epithelium-derived growth factor (IN dimer-LEDGF) complex, J. Biol

C. Jones, G. S. Hung, M. Samuel, D. Novikov, N. Mukund et al., Dithiothreitol causes HIV-1 integrase dimer dissociation while agents interacting with the integrase dimer interface promote dimer formation, Biochemistry, vol.284, issue.50, pp.1567-1581, 0200.

T. R. Burke, . Jr, S. F. Le-grice, M. Kvaratskhelia, and C. J. Mckee, Identification of an inhibitor-binding site to HIV-1 integrase with affinity acetylation and mass spectrometry, Proc. Natl. Acad. Sci. U.S.A. J. J.; Eidahl, J. O.; Shkriabai, N, vol.101, issue.6894?6899201, 2004.

S. Hess, T. R. Burke, . Jr, and M. Kvaratskhelia, An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule Symmetrical 1-pyrrolidineacetamide showing anti-HIV activity through a new binding site on HIV-1 integrase, 824?832. (202) Du, pp.1261-1267, 2008.

J. Demeulemeester, C. Tintori, M. Botta, Z. Debyser, F. Christ et al., Development of an AlphaScreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site Protein posttranslational modifications: the chemistry of proteome diversifications Simple histone acetylation plays a complex role in the regulation of gene expression. Briefings Funct, integrase dimerization inhibitors 618?628. (205) Wielens 1455?1462. (206), pp.3109-3114, 2005.

E. Novellino, A. Cereseto, M. Toth, I. M. Boros, E. Balint et al., Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase Elevated level of lysine 9-acetylated histone H3 at the MDR1 promoter in multidrug-resistant cells, Cancer Sci. 2012, 103, 659?669. (208) Hottiger, M. O.; Nabel, G. J. Viral replication and the coactivators p300 and CBP, pp.560-565, 2000.

A. Fittipaldi, M. Lusic, A. Marcello, M. Giacca, M. Terreni et al., Acetylation of HIV-1 integrase by p300 regulates viral integration-dependent acetylation of HIV-1 integrase enhances viral integration, EMBO J. Retrovirology, vol.24, pp.3070-3081, 2005.

M. A. Muesing and D. Arosio, Post-translational acetylation of the HIV-1 integrase carboxyl-terminal domain is dispensable for viral replication, J. Virol. C.; Alpi, E.; Lusic, M, vol.81, issue.211, pp.3012-3017, 2007.

M. Giacca, A. Cereseto, G. Giannini, and W. Cabri, The TRIM family protein KAP1 inhibits HIV- 1 integration, Cell Host Microbe, vol.9, issue.212, pp.484-495, 2011.

1. Wiech, N. L. Fisher, J. F. Helquist, P. Wiest, O. Chan et al., Inhibition of histone deacetylases: a pharmacological approach to the treatment of noncancer disorders DNAzymes and their therapeutic possibilities A DNA enzyme that cleaves RNA Non-Watson Crick base pairs might stabilize RNA structural motifs in ribozymes?a comparative study of group-I intron structures Inhibition of HIV-1 integrase gene expression by 10-23 DNAzyme Novel mono-and di- DNAenzymes targeted to cleave TAT or TAT-REV RNA inhibit HIV-1 gene expression A quantitative assay for HIV DNA integration in vivo, Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives, pp.257-271, 1994.

R. F. Siliciano, Z. Hayouka, and D. J. Volsky, Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection, Nature, vol.387, issue.220, pp.183-188, 1997.

A. Friedler, A. Loyter, A. Levin, Z. Hayouka, A. Friedler et al., A novel role for the viral Rev protein in promoting resistance to superinfection by human immunodeficiency virus type 1 Integration of HIV-1 DNA is regulated by interplay between viral rev and cellular LEDGF/p75 proteins Stimulation of the HIV-1 integrase enzymatic activity and cDNA integration by a peptide derived from the integrase protein, Protein Eng., Des. Sel. J. Gen. Virol. Rosenbluh, J.; Hayouka, Z.; Friedler, A. Mol. Med. Biopolymers, vol.22, issue.16223224, pp.34-44, 2009.

U. Fischer, E. Meese, S. Wain-hobson, A. Meyerhans, Z. Hayouka et al., Recombination: multiply infected spleen cells in HIV patients, Nature, vol.418, issue.225, p.144, 2002.

A. Friedler, A. Loyter, and A. Levin, Novel regulation of HIV-1 replication and pathogenicity: Rev inhibition of integration Specific eradication of HIV-1 from infected cultured cells, Protein Eng., Des. Sel. Hayouka, Z.; Friedler, A. AIDS Res. Ther. Journal of Medicinal Chemistry J. Med. Chem, vol.22, issue.57, pp.753-763, 2009.