3. Hd, 1. , 1. Oh-)-c, H. , N. M. et al., Anal Yield 71%; 76?78 °C; cyclohexane 1590 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.37 (t, 3H, CH 2 CH 332 (s, 3H, CH 3 ), 4.33 (q, 2H, CH 2 CH 3 ), 5.19 (s, 2H 6-[1-(4-Methylphenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid Ethyl Ester (7d) Yield 60%; 85?86 °C; n-hexane23 (s, 2H Yield 87%3-Fluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid Ethyl Ester (7f) Yield 76%, 69?6.72 IR ? 3400 (OH), 1721 (C?O ester), 1605 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.41 (t, 3H, CH 2 CH 3 ), 2.36 (s, 3H, CH 3 1680 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.44 (t, 3H, CH 2 CH 3 ), 4.41 (q, 2H, CH 2 CH 3 ), 5.34 (s, 2H, CH 2 ), 6.37 (t, 1H, pyrrole ?), 6.41?6.46 (m, 2H, J t = 15.2 Hz, hexanoate C5?H and hexanoate C3?H), 6.86?6.92 (m, 2H, benzene H 1600 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.37 (t, 3H, CH 2 CH 3 12?16 (sb, 1H, OH). Anal. (C 19 H 18 FNO 4 ) C, H, N, F. 6-[1-(4-Fluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid Ethyl Ester (7g). Yield 78%; 96?97 °C; ligroin. IR ?C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.42 (t, 3H, CH 2 CH 3 t = 15.5 Hz, pyrrole ?, hexanoate C3?H, hexanoate C5?H), pp.7-16

1. , 1. Oh-)-c, H. , N. , F. 3h et al., Anal Yield 75%; 93?95 °C; ligroin 1574 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.37 (t, 3H, CH 2 CH 321 (s, 2H 6-[1-(4-Chlorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid Ethyl Ester (7i) Yield 60%; 134?136 °C; ligroin. IR ? 3400 (OH), 1700 (C?O ester), 1600 (C?O ketone) cm ?1 . 1 H NMR Journal of Medicinal Chemistry Article dx.doi.org/1024 (s, 2H, CH 2 ), 6.35?6.43 (m, 3H, hexanoate C3?H, hexanoate C5?H and pyrrole ?), 6.88?7.04 (m, 4H-dioxo-5-hexe- noic Acid Ethyl Ester (7j) Yield 80%; 179?180 °C; benzene/ cyclohexane, 05?7.09 IR ? 3400 (OH), 2227 (CN), 1746 (C?O ester), 1578 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.43 (t, 3H, CH 2 CH 3 ), 4.40 (q, 2H, CH 2 CH 3 ), 5.52 (s, 2H, CH 2 12?16 (sb, 1H, OH). Anal. (C 20 H 18 N 2 O 4 ) C, H, N. 6-[1-(3-Cyanophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid Ethyl Ester (7k). Yield 83%; 105?106 °C; acetone. IR ? 3400 (OH), 2227 (CN) 12?16 (sb, 1H, OH). Anal. (C 20 H 18 N 2 O 4 ) C, H, N. 6-[1-(4-Cyanophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid Ethyl Ester (7l). Yield 82%; 128?130 °C; ligroin. IR ?, pp.12-16, 1021.

4. , H. , 1. Oh-)-c, H. , N. D. et al., Anal Yield 100% 1620 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.37 (t, 3H, CH 2 CH 3 ), 3.90 (s, 3H, CH 321 (s, 2H 6-[1-(4-Methoxyphenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid Ethyl Ester (7n) Yield 64%; 84?86 °C; ethanol20 (s, 2H 12?16 (sb, 1H, OH) Anal Yield 85%; 73?75 °C; benzene/ cyclohexane, 17?8.21 IR ? 3400 (OH), 1701 (C?O ester), 1598 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.41 (t, 3H, CH 2 CH 3 ), 3.82 (s, 3H, CH 3 ), 4.37 (q, 2H, CH 3H, CH 2 CH 3 ), 4.12 (q, 2H, CH 2 CH 3 ), 4.35 (q, 2H, CH 2 CH 3 ), 5.25 (s, 2H, CH 2 ), 6.27 (t, 1H, pyrrole ?), 6.33 (s, 1H, hexanoate C3?H), 6.35 (d, 1H, J t = 15.3 Hz, hexanoate C5?H), 6.83?6.89 (m, 3H, benzene H hexenoic Acid Ethyl Ester (7p). Yield 46%; 99?101 °C; ligroin. IR ? 3400 (OH), 1729 (C?O ester), 1616 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.38 (t, 3H, CH 2 CH 3 ), 2.27 (s, 6H, CH 3 ), 4.34 (q, 2H, CH 12?16 (sb, 1H, OH). Anal. (C 21 H 23 NO 4 ) C, H, N. 6-[1-(2,3-Difluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid Ethyl Ester (7q). Yield 79%; 67?69 °C; acetone. IR ? ? and hexanoate C3?H), 7.11? 7.26 (m, 2H, pyrrole ? and J t = 15.9 Hz, hexanoate C5?H), 7.48 (s, 1H, pyrrole ?), 7.61?7.84 (m, 3H, benzene 3H), pp.12-16

H. Hz, 1. C6?hsb, H. Oh-)-c, N. , and F. , Anal Yield 82%29 (s, 2HDifluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid Ethyl Ester (7s) Yield 82%; 84?85 °C; acetone, 1601 (C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.46 (t, 3H, CH 2 CH 3 ), 4.39 (q, 2H, CH 2H, hexanoate C5?H and hexanoate C3?H), 6.85?6.99 (m, 5H, pyrrole ?, pyrrole ? and benzene H) 7.65 (d, 1H, J t = 15.3 Hz, hexanoate C6?H), 12?16 (sb, 1H, OH). Anal (s, 1H, pyrrole ?) 6.96 (s, 1H, hexanoate C3?H), pp.12-16

H. Hz, 1. C6?hsb, H. Oh-)-c, N. , and F. , Anal6-Difluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid Ethyl Ester (7t) Yield 50%; 125?127 °C; ligroin, C?O ketone) cm ?1 . 1 H NMR (CDCl 3 ) ? 1.42 (t, 3H, CH 2 CH 3, pp.12-16

C. , H. , N. , and F. 1h, 95 (d, 1H, J t = 15.2 Hz, hexanoate C6?H) 12?16 (sb, 1H, OH) Anal 6-[1-(3,4-Difluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid Ethyl Ester (7u) Yield 60%; 74?75 °C; acetone, 91?7.01C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 1.83 (t, 3H, CH 2 CH 3 ), 4.79 1H, pyrrole ?) 6.93 (s, 1H, hexanoate C3?H), pp.1737-1633

H. C. Anal, N. , and F. 1h, 6-[1-(3,5-Difluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid Ethyl Ester (7v) Yield 58%; 75?78 °C; ligroin. IR ? 3400 (OH), 1735 (C?O ester), 1630 (C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 1, ), 6.57?6.59 (m, 2H, pyrrole ? and pyrrole ?), 6.78 (m, 1H, benzene H), 6.92 (m, 1H, benzene H), pp.2897-2909

H. C. Anal, N. , and F. , Yield 100%; 110?113 °C; benzene/ cyclohexane-Dichlorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid Ethyl Ester (7x) Yield 69%, C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 1.30 (t, 3H, CH 2 CH 3 ), 4.26 (q, 2H, CH 2 CH 3 ), 5.48 (s, 2H ?) 7.41?7.47 (m, 3H, benzene H and hexanoate C6?H), 7.74 (d, 1H, benzene H), 12? 16 (sb, 1H, OH). Anal, pp.3400-1773

C. Hz and O. 1h, Anal. (C 19 H 17 Cl 2 NO 4 ) C, H, N, Cl. 6-[1-(3,5-Dichlorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid Ethyl Ester (7y) Yield 62%, 1646 (C?O ketone) cm ?1 . 1 H NMR 6.35?6.42 (m, 3H, pyrrole ?, hexanoate C3?H and hexanoate C5?H), 6.88?6.91sb, 1H, OH). Anal. (C 19 H 17 Cl 2 NO 4 ) C, H, N, Cl. General Procedure for the Synthesis of Diketo Acids 8a?y, pp.90-97, 1021.

1. Hexanoate-c3?hd, 1. Hz, 2. , C. , H. et al., Anal. (C 17 H 14 FNO 4 ) C, H, N, F. 6-[1-(4-Fluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid (8g) Yield 54%; 98?99 °C; benzene/toluene. IR ? 3400 (OH), 1689 (C?O acid), 1598 (C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 5.38 (s, 2H3-Chlorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid (8h) Yield 79%; 144?145 °C; toluene/cycloexane, 6.25?6.33 (m, 2H, pyrrole ? and hexanoate C3?H), 6.62 (d, 1H, J t = 15.6 Hz, hexanoate C5?H), 6.93?7.01 (m, 3H, benzene H and pyrrole ?), 7.15 (d, 2H, benzene H) 12?18 (sb, 2H, OH acid and OH enole). Anal. (C 17 H 14 FNO 4 ), pp.5-443140

H. Hz, 2. C6?hsb, C. , H. , and N. , Anal 6-[1-(4-Chlorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid (8i) Yield 76%; 170?172 °C; benzene/toluene. IR ? 3400 (OH), 1685 (C?O acid), 1548 (C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 5.44 (s, 2H, 1H, pyrrole ?), 6.48 (s, 1H, hexanoate C3?H) 12?18 (sb, 2H, OH acid and OH enole). Anal, pp.12-1837

H. C. Anal and N. 1h, 6-[1-(3-Cyanophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid (8k) Yield 44%; 126?128 °C; 2-propanol/isopropyl ether, 1717 (C?O acid), 1582 (C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 5.52 (s, 2H, pp.2231-2237

H. Hz, 3. C5?hm, and 2. , Anal. (C 18 H 14 N 2 O 4 ) C, H, N. 6-[1-(4-Cyanophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid (8l) Yield 93%; >250 °C; washed with isopropyl ether, 1746 (C?O acid), 1578 (C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 5.59 (s, 2H48 (s, 1H, hexanoate C3?H), 6.71 (d, 1H, J t = 15.4 Hz, hexanoate C5?H), 7.05 (s, 1H 12?18 (sb, 2H, OH acid and OH enole, pp.7-34

H. C. Anal and N. , 6-[1-(2-Methoxyphenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hexe- noic Acid (8m) Yield 100%; 142?143 °C; toluene, IR ?, vol.3400, pp.1732-1601

H. Hz and 2. C6?hsb, Anal. (C 19 H 19 NO 5 ) C, H, N. 6-[1-(3,5-Dimethylphenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5- hexenoic Acid (8p) Yield 78%; 145?147 °C; benzene. IR ? 3400 (OH), 1713 (C?O acid, pp.12-18

H. C. Anal, N. , F. C. , H. , N. et al., 4-dioxo-5-hex- enoic Acid (8s) Yield 51%; 141?143 °C; toluene/n-hexane. IR ? 3400 (OH), 1747 (C?O acid), 1711 (C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 5.50 (s, 2H51 (s, 1H, hexanoate C3?H), 6, 68?6.77 (m, 2H, pyrrole ? and hexanoate C5? H), 7.04 (s, 1H, pyrrole ?), 7.21?7.39 (m, 3H, benzene H) 12?18 (sb, 2H, OH acid and OH enole). Anal. (C 17 H 13 F 2 NO 4 ), pp.4-5

1. and C. 2h, Anal. (C 17 H 13 F 2 NO 4 ) C, H, N, F. 6-[1-(3,5-Difluorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid (8v) Yield 60%; 146?149 °C; washed with ethanol. IR ? 3400 (OH), 1712 (C?O acid), 1595 (C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 6.29 (s, 2H, 6.36 (s, 1H, pyrrole ?), 6.47 (s, 1H, hexanoate C3?H), 6.70?6.78 1H, pyrrole ?), 7.35 (s, 1H, benzene 1H), 7.60 (d, 1H, hexanoate C6?H), 12?18 (sb, 2H, OH acid and OH enole). Anal. (C 17 H 13 F 2 NO 4 ) C, H, N, F. 6-[1-(2,4-Dichlorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid (8w). Yield 68%; 145?146 °C; toluene. IR ?, pp.8030-8036

H. C. Anal and N. , 6-Dichlorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid (8x) Yield 84%; 132?134 °C; toluene, IR ?, vol.3400, issue.612, pp.1758-1630

1. Hexanoate-c3?hd, 1. , C. , H. , and N. , 67 (s, 1H01 (s, 1H 12?18 (sb, 2H, OH acid and OH enole) Anal 6-[1-(3,5-Dichlorophenyl)methyl-1H-pyrrol-2-yl]-2,4-dioxo-5-hex- enoic Acid (8y) Yield 95%; >300 °C; toluene/cyclohexane, ), 7.94 (d, 1H, J t = 15.7 Hz, hexanoate C6?H) IR ? 3400 (OH), 1743 (C?O acid), 1521 (C?O ketone) cm ?1 . 1 H NMR (DMSO-d 6 ) ? 5.38 (s, 2H, hexanoate C5?H), 7.02?7.35 (m, 5H, pyrrole ?, pyrrole ? and hexanoate C6?H), 7.50 (s, 1H, benzene H), 12?18 (sb, 2H, OH acid and OH enole). Anal. (C 17 H 13 Cl 2 NO 4 ) C, H, N, Cl. Biological Methods. HIV-1 RNase H Inhibition. The RTassociated RNase H activity was measured in a polymeraseindependent cleavage assay in which the Poly(dC)-[ 3 H]Poly(rG) hybrid was used as reaction substrate as previously described. 30 HIV-1 IN Inhibition. ST activity was monitored using an electrochemiluminescent plate-based assay as previously described, pp.6181-6208

. Briefly, the integration reaction was initiated by addition of target DNA and carried out for 60 min at 37 °C. Finally, plates were read on the BioVeris M-SERIES analyzer. HIV-1 Replication Inhibition Compounds antiviral activity was determined in a cell-based assay according to the procedure described previously 31 and modified as follows. HeLa-CD4-LTR-?-gal cells were maintained in DMEM with 10% serum and 0.5 mg/mL G418. The day prior experimentation, 96-well plates were prepared to contain 10000 cells per well in 100 ?L of DMEM medium complemented with 10% serum On day one, each drug is serial diluted directly on cells following a 3-fold dilution over 6 points and each well is then filled to 200 ?L with either fresh medium or concentrated viral supernatant (HIV-1(IIIB) Advanced Biotechnologies Inc.). The highest compound concentration tested was 50 ?M. On day two, cells are washed three times with PBS before adding 200 ?L of a solution containing 50 mM Tris-HCl pH 7.5, 100 mM ?-mercaptoethanol, 0.05% Triton X100, and 5 mM 4-methyl-umbelliferyl-?-D-galactopyranoside (4- MUG, Sigma) On day three, sealed plates are read in a SpectraMax GEMINI-XS (Molecular Devices) with ? ex/em = 360/460 nm. Selected compounds (see Table 1) were tested for anti-HIV activity against the replication of HIV-1 (IIIB) in MT-4 cells. MT-4 cells were grown and maintained in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf serum, 2 mM glutamine, 0.1% sodium bicarbonate, and 20 ?g/mL gentamicin (culture medium) HIV-1 (HTLV-IIIB/LAI) was used in all experiments. Inhibition of virusinduced cytopathic effect by the compounds was monitored by a classical survival assay, ) was incubated for 30 min at 37 °C in the presence of 250 nM of recombinant HIV-1 IN. After addition of the compounds50% cell culture infective dose)) were added to a flat-bottomed microtiter tray with 50 ?L of medium containing various concentrations of the test compounds. MT-4 cells were added at a final concentration of 6 × 10 5 cells/mL. After 5 days of incubation at 37 °C, cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)- 2, pp.50-51

C. Toxicity, Similarly to the antiviral assays, plates were prepared with 10000 HeLa-CD4-LTR-?-gal cells per well and a serial dilution of compounds in 100 ?L After 24 h of culture, 100 ?L of ATPlite reagent (Perkin-Elmer) was added to each well. After 5 min at room temperature, plates' luminescence was quantified using an EnVision multilabel reader (Perkin-Elmer) according to manufacturer's instructions

Y. Mehellou, E. De-clercq, and M. E. Feldman, Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? Chapter Three -HIV integrase inhibitors: 20-year landmark and challenges, Journal of Medicinal Chemistry Article dx.doi.org/10, pp.521-538, 1021.

A. Targeted-polypharmacology-muregi, F. W. Kirira, P. G. Ishih, A. S. Prakash, A. Medhi et al., Novel rational drug design strategies with potential to revolutionize malaria chemotherapy Dual inhibition: a novel promising pharmacological approach for different disease conditions, 691? 699. (4) 113?143. (5) Patyar, pp.459-471, 2008.

A. G. Marcelin, C. Perno, F. Esposito, A. Corona, E. Tramontano et al., Characterization and structural analysis of HIV-1 integrase conservation HIV-1 reverse transcriptase still remains a new drug target: structure, function, classical inhibitors and new inhibitors with innovative mechanisms of actions, HIV-1 RT-associated RNase H function inhibitors: recent advances in drug development. Curr. Med, p.586401, 2009.

C. Distinto, S. Maccioni, E. Meleddu, R. Corona, A. Alcaro et al., HIV-1 RNase H: recent progress in an exciting, yet little explored, drug target Molecular aspects of the RT/drug interactions. Perspective of dual inhibitors, Mini-Rev. Med. Chem. Curr. Pharm. Des. 2013 J. L, vol.17, issue.19111, pp.727-737, 2006.

V. De-soultrait and P. Lozach, -(benzoylamino)thien-2- yl]-2,4-dioxobutanoic acid, J. Biol. Chem, vol.278, issue.12, 2003.

M. L. Andreola and S. Litvak, DNA aptamers derivated from HIV-1 RNase H inhibitors are strong anti-integrase agents, J. Mol. Biol, vol.324, 2002.

M. Andreóla, Targeting HIV-1 integrase with aptamers selected against the purified RNase H domain of HIV-1 RT, 911?919. (13) Didierjean, 2005.

M. Valnot, J. Y. Piettre, S. R. Marquet, R. Budihas, S. Gorshkova et al., Inhibition of human immunodeficiency virus type 1 reverse trascriptase Le Grice, S. Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones, Rnase H, and integrase activities by hydroxytropolones. Antimicrob. Agents Chemother . 2005, 49, 4884?4894. (14), pp.1249-1256, 2005.

R. Yarchoan and Y. Pommier, Preferential inhibition of the magnesium dependent strand transfer reaction of HIV-1 integrase by ?hydroxytropolones, Mol. Pharmacol, vol.69, issue.16, pp.1454-1460, 2006.

Y. Pommier, Madurahydroxylactone derivatives as dual inhibitors of human immunodeficiency virus type 1 integrase and RNase H

F. Christ, Z. Debyser, P. Cotelle, and M. L. Andreola, Design, synthesis, and biological evaluation of a series of 2-hydroxyquinoline-1,3(2H,4H)-diones as dual inhibitors of human immunodeficiency virus type 1 integrase and reverse transcriptase RNase H domain, J. Med. Chem, vol.51, issue.18, 2008.

P. Cotelle, E. Tramontano, F. Esposito, R. Badas, R. Di-santo et al., 4H)-diones as inhibitors of HIV-1 integrase and reverse transcriptase RNase H domain: influence of the alkylation of position 4Fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo- 5-hexenoic acid ethyl ester a novel diketo acid derivative which selectively inhibits the HIV-1 viral replication in cell culture and the ribonuclease H activity in vitro, Eur. J. Med. Chem. Antiviral Res, pp.46-535, 2005.

). Santo, R. Costi, R. Di-santo, R. Artico, M. Roux et al., Diketo Acids Derivatives as Dual Inhibitors of Human Immunodeficiency Virus Type 1 Integrase and the Reverse Transcriptase RNase H Domain, Journal of Medicinal Chemistry Article dx.doi.org/10. 6-Aryl-2,4-dioxo-5-hexenoic acids, novel integrase inhibitors active against HIV-1 multiplication in cell-based assays, pp.8588-8598, 1021.
DOI : 10.2174/092986711796504619

URL : https://hal.archives-ouvertes.fr/pasteur-00968593

S. Massa, E. Tramontano, M. E. Marongiu, A. De-montis, P. D. La-colla et al., Geometrically and conformationally restrained cinnamoyl-compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation and molecular modeling, J. Med. Chem, vol.41, issue.396023, 1998.

A. Pani, HIV-1 integrase inhibitors that block HIV-1 replication in infected cells. Planning synthetic derivatives from natural products

R. Costi, R. Di-santo, M. Artico, S. Massa, R. Ragno et al., 5- trihydroxybenzylidene) derivatives of cyclohexanone: novel potent HIV-1 integrase inhibitors that prevent HIV-1 multiplication in cellbased assays Probing HIV-1 integrase inhibitor binding sites with position-specific integrase-DNA cross-linking assays, Pure Appl. Chem. Bioorg. Med. Chem. Mol. Pharmacol, vol.754, issue.60, pp.6-893, 2003.

C. D. Marchand, R. Santo, R. Costi, and A. Roux, Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities and mechanism of action, J. Med. Chem. C, vol.49, 2006.

L. Nencioni, A. T. Palamara, Y. Pommier, C. Marchand, S. Hare et al., Novel quinolinonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis and biological activities, J. Med. Chem, vol.51, issue.29, pp.4744-4750, 2008.

F. Esposito, T. Kharlamova, S. Distinto, L. Zinzula, Y. Cheng et al., Alizarine derivatives as new dual inhibitors of the HIV-1 reverse transcriptase(RT)-associated DNA polymerase and ribonuclease H (RNase H) activities effective also on the RNase H activity of nonnucleoside resistant RTs, Retroviral intasome assembly and inhibition of DNA strand transfer, pp.278-1444, 2010.

S. Litvak, M. Ventura, and M. L. Andreóla, Cellular uptake of ODNs in HIV-1 human-infected cells: a role for viral particles in DNA delivery? Oligonucleotides 151?165. (32) Kimpton, J.; Emerman, M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene, J. Virol. Journal of Medicinal Chemistry J. Med. Chem, vol.17, issue.56, pp.2232-2239, 1992.