K. Macphee-quigley, P. Taylor, and S. Taylor, Primary structures of the catalytic subunits from two molecular forms of acetylcholinesterase. A comparison of NH 2 -terminal and active center sequences, J Biol Chem, vol.260, pp.12185-12189, 1985.

M. Schumacher, S. Camp, Y. Maulet, M. Newton, K. Macphee-quigley et al., Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence, Nature, vol.100, issue.6052, pp.407-409, 1986.
DOI : 10.1038/319407a0

Y. Malthiery and S. Lissitzky, Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA, European Journal of Biochemistry, vol.148, issue.3, pp.491-498, 1987.
DOI : 10.1016/0006-291X(86)91187-3

L. Mercken, M. Simons, S. Swillens, M. Massaer, and G. Vassart, Primary structure of bovine thyroglobulin deduced from the sequence of its 8,431-base complementary DNA, Nature, vol.160, issue.6029, pp.647-651, 1985.
DOI : 10.1038/316647a0

D. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow et al., hydrolase fold, "Protein Engineering, Design and Selection", vol.5, issue.3, pp.197-211, 1992.
DOI : 10.1093/protein/5.3.197

URL : http://peds.oxfordjournals.org/cgi/content/short/5/3/197

K. Ichtchenko, T. Nguyen, and T. Sudhof, Structures, Alternative Splicing, and Neurexin Binding of Multiple Neuroligins, Journal of Biological Chemistry, vol.271, issue.5, pp.2676-2682, 1996.
DOI : 10.1074/jbc.271.5.2676

I. Fabrichny, P. Leone, G. Sulzenbacher, D. Comoletti, M. Miller et al., Structural Analysis of the Synaptic Protein Neuroligin and Its ??-Neurexin Complex: Determinants for Folding and Cell Adhesion, Neuron, vol.56, issue.6, pp.979-991, 2007.
DOI : 10.1016/j.neuron.2007.11.013

S. Jamain, H. Quach, C. Betancur, M. Rastam, C. Colineaux et al., Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nature Genetics, vol.34, issue.1, pp.27-29, 2003.
DOI : 10.1038/ng1136

URL : https://hal.archives-ouvertes.fr/inserm-00124744

T. Yen, B. Nightingale, J. Burns, D. Sullivan, and P. Stewart, Butyrylcholinesterase (BCHE) Genotyping for Post-Succinylcholine Apnea in an Australian Population, Clinical Chemistry, vol.49, issue.8, pp.1297-1308, 2003.
DOI : 10.1373/49.8.1297

D. Jaco, A. Comoletti, D. Kovarik, Z. Gaietta, G. Radic et al., A Mutation Linked with Autism Reveals a Common Mechanism of Endoplasmic Reticulum Retention for the ??,beta-Hydrolase Fold Protein Family, Journal of Biological Chemistry, vol.281, issue.14, pp.9667-9676, 2006.
DOI : 10.1074/jbc.M510262200

O. Lockridge, S. Adkins, and B. Du, Location of disulfide bonds within the sequence of human serum cholinesterase, J Biol Chem, vol.262, pp.12945-12952, 1987.

Y. Park and P. Arvan, The Acetylcholinesterase Homology Region Is Essential for Normal Conformational Maturation and Secretion of Thyroglobulin, Journal of Biological Chemistry, vol.279, issue.17, pp.17085-17089, 2004.
DOI : 10.1074/jbc.M314042200

S. Swillens, M. Ludgate, L. Mercken, J. Dumont, and G. Vassart, Analysis of sequence and structure homologies between thyroglobulin and acetylcholinesterase: Possible functional and clinical significance, Biochemical and Biophysical Research Communications, vol.137, issue.1, pp.142-148, 1986.
DOI : 10.1016/0006-291X(86)91187-3

F. Molina, M. Bouanani, B. Pau, and C. Granier, Characterization of the Type-1 Repeat from Thyroglobulin, a Cysteine-Rich Module Found in Proteins from Different Families, European Journal of Biochemistry, vol.271, issue.1, pp.125-133, 1996.
DOI : 10.1111/j.1432-1033.1996.0125h.x

L. Braverman and R. Utiger, Werner & Ingbar's The Thyroid: A Fundamental and Clinical Text The cholinesterase-like domain, essential in thyroglobulin trafficking for thyroid hormone synthesis, is required for protein dimerization, J Biol Chem, vol.284, pp.12752-12761, 2000.

C. Rivolta and H. Targovnik, Molecular advances in thyroglobulin disorders, Clinica Chimica Acta, vol.374, issue.1-2, pp.8-24, 2006.
DOI : 10.1016/j.cca.2006.05.043

H. Targovnik, S. Esperante, and C. Rivolta, Genetics and phenomics of hypothyroidism and goiter due to thyroglobulin mutations, Molecular and Cellular Endocrinology, vol.322, issue.1-2, pp.44-55, 2010.
DOI : 10.1016/j.mce.2010.01.009

Y. Kanou, A. Hishinuma, K. Tsunekawa, K. Seki, Y. Mizuno et al., Thyroglobulin Gene Mutations Producing Defective Intracellular Transport of Thyroglobulin Are Associated with Increased Thyroidal Type 2 Iodothyronine Deiodinase Activity, The Journal of Clinical Endocrinology & Metabolism, vol.92, issue.4, pp.1451-1457, 2007.
DOI : 10.1210/jc.2006-1242

V. Pardo, J. Vono-toniolo, I. Rubio, M. Knobel, R. Possato et al., The p.A2215D Thyroglobulin Gene Mutation Leads to Deficient Synthesis and Secretion of the Mutated Protein and Congenital Hypothyroidism with Wide Phenotype Variation, The Journal of Clinical Endocrinology & Metabolism, vol.94, issue.8, pp.2938-2944, 2009.
DOI : 10.1210/jc.2009-0150

URL : https://hal.archives-ouvertes.fr/in2p3-00020777

H. Raef, R. Shehri, S. Zou, M. Mana, H. Baitei et al., Biallelic p.R2223H Mutation in the Thyroglobulin Gene Causes Thyroglobulin Retention and Severe Hypothyroidism with Subsequent Development of Thyroid Carcinoma, The Journal of Clinical Endocrinology & Metabolism, vol.95, issue.3, pp.1000-1006, 2010.
DOI : 10.1210/jc.2009-1823

P. Kim, S. Hossain, Y. Park, I. Lee, S. Yoo et al., A single amino acid change in the acetylcholinesterase-like domain of thyroglobulin causes congenital goiter with hypothyroidism in the cog/cog mouse: A model of human endoplasmic reticulum storage diseases, Proceedings of the National Academy of Sciences, vol.95, issue.17, pp.9909-9913, 1998.
DOI : 10.1073/pnas.95.17.9909

A. Hishinuma, S. Furudate, M. Oh-ishi, N. Nagakubo, T. Namatame et al., A Novel Missense Mutation (G2320R) in Thyroglobulin Causes Hypothyroidism in rdw Rats, Endocrinology, vol.141, issue.11, pp.4050-4055, 2000.
DOI : 10.1210/en.141.11.4050

P. Kim, M. Ding, S. Menon, C. Jung, J. Cheng et al., Rat, Molecular Endocrinology, vol.14, issue.12, pp.1944-1953, 2000.
DOI : 10.1210/mend.14.12.0571

URL : https://hal.archives-ouvertes.fr/hal-00666997

U. Pieper, B. Webb, D. Barkan, D. Schneidman-duhovny, A. Schlessinger et al., ModBase, a database of annotated comparative protein structure models, and associated resources, Nucleic Acids Research, vol.39, issue.Database, pp.465-474, 2011.
DOI : 10.1093/nar/gkq1091

URL : https://hal.archives-ouvertes.fr/pasteur-01414232

N. Eswar, B. John, N. Mirkovic, A. Fiser, V. Ilyin et al., Tools for comparative protein structure modeling and analysis, Nucleic Acids Research, vol.31, issue.13, pp.3375-3380, 2003.
DOI : 10.1093/nar/gkg543

P. Caron, C. Moya, D. Malet, V. Gutnisky, B. Chabardes et al., Compound Heterozygous Mutations in the Thyroglobulin Gene (1143delC and 6725G???A [R2223H]) Resulting in Fetal Goitrous Hypothyroidism, The Journal of Clinical Endocrinology & Metabolism, vol.88, issue.8, pp.3546-3553, 2003.
DOI : 10.1210/jc.2002-021744

H. Targovnik, C. Rivolta, F. Mendive, C. Moya, J. Vono et al., Congenital Goiter with Hypothyroidism Caused by a 5??? Splice Site Mutation in the Thyroglobulin Gene, Thyroid, vol.11, issue.7, pp.685-690, 2001.
DOI : 10.1089/105072501750362763

D. Comoletti, R. Flynn, L. Jennings, A. Chubykin, T. Matsumura et al., Characterization of the interaction of a recombinant soluble neuroligin, pp.1-1, 2003.

D. Jaco, A. Dubi, N. Comoletti, D. Taylor, and P. , Folding anomalies of neuroligin3 caused by a mutation in the ??/??-hydrolase fold domain, Chemico-Biological Interactions, vol.187, issue.1-3, pp.56-58, 2010.
DOI : 10.1016/j.cbi.2010.03.012

D. Jaco, A. Comoletti, D. Dubi, N. Camp, S. Taylor et al., Processing of Cholinesterase-like α/β-Hydrolase Fold Proteins: Alterations Associated with Congenital Disorders, Protein & Peptide Letters, vol.19, issue.2, pp.173-179, 2012.
DOI : 10.2174/092986612799080103

J. Lee, D. Jeso, B. Arvan, and P. , The cholinesterase-like domain of thyroglobulin functions as an intramolecular chaperone, Journal of Clinical Investigation, vol.118, issue.8, pp.2950-2958, 2008.
DOI : 10.1172/JCI35164

J. Lee and P. Arvan, Repeat Motif-containing Regions within Thyroglobulin, Journal of Biological Chemistry, vol.286, issue.30, pp.26327-26333, 2011.
DOI : 10.1074/jbc.M111.242099

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143595

D. Arac, A. Boucard, E. Ozkan, P. Strop, E. Newell et al., Structures of Neuroligin-1 and the Neuroligin-1/Neurexin-1?? Complex Reveal Specific Protein-Protein and Protein-Ca2+ Interactions, Neuron, vol.56, issue.6, pp.992-1003, 2007.
DOI : 10.1016/j.neuron.2007.12.002

Y. Bourne, P. Taylor, and P. Marchot, Acetylcholinesterase inhibition by fasciculin: Crystal structure of the complex, Cell, vol.83, issue.3, pp.503-512, 1995.
DOI : 10.1016/0092-8674(95)90128-0

F. Chen, V. Venugopal, B. Murray, and G. Rudenko, The Structure of Neurexin 1?? Reveals Features Promoting a Role as Synaptic Organizer, Structure, vol.19, issue.6, pp.779-789, 2011.
DOI : 10.1016/j.str.2011.03.012

M. Miller, M. Mileni, D. Comoletti, R. Stevens, M. Harel et al., The Crystal Structure of the ??-Neurexin-1 Extracellular Region Reveals a Hinge Point for Mediating Synaptic Adhesion and Function, Structure, vol.19, issue.6, pp.767-778, 2011.
DOI : 10.1016/j.str.2011.03.011

J. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman et al., Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein, Science, vol.253, issue.5022, pp.872-879, 1991.
DOI : 10.1126/science.1678899

A. Belkadi, C. Jacques, F. Savagner, and Y. Malthiery, Phylogenetic analysis of the human thyroglobulin regions, Thyroid Research, vol.5, issue.1, 2012.
DOI : 10.1371/journal.pone.0016410

URL : https://hal.archives-ouvertes.fr/inserm-00738649

S. Simon, E. Krejci, and J. Massoulie, A four-to-one association between peptide motifs: four C-terminal domains from cholinesterase assemble with one proline-rich attachment domain (PRAD) in the secretory pathway, The EMBO Journal, vol.76, issue.21, pp.6178-6187, 1998.
DOI : 10.1093/emboj/17.21.6178

D. Comoletti, D. Jaco, A. Jennings, L. Flynn, R. Gaietta et al., The Arg451Cys-Neuroligin-3 Mutation Associated with Autism Reveals a Defect in Protein Processing, Journal of Neuroscience, vol.24, issue.20, pp.4889-4893, 2004.
DOI : 10.1523/JNEUROSCI.0468-04.2004

D. Jaco, A. Lin, M. Dubi, N. Comoletti, D. Miller et al., Neuroligin trafficking deficiencies arising from mutations in the a/b-hydrolase fold protein family, 2010.

K. Tabuchi, J. Blundell, M. Etherton, R. Hammer, X. Liu et al., A Neuroligin-3 Mutation Implicated in Autism Increases Inhibitory Synaptic Transmission in Mice, Science, vol.318, issue.5847, pp.71-76, 2007.
DOI : 10.1126/science.1146221

A. Valle, O. Connor, D. Taylor, P. Zhu, G. Montgomery et al., Butyrylcholinesterase: Association with the Metabolic Syndrome and Identification of 2 Gene Loci Affecting Activity, Clinical Chemistry, vol.52, issue.6, pp.1014-1020, 2006.
DOI : 10.1373/clinchem.2005.065052

F. Becq, Cystic Fibrosis Transmembrane Conductance Regulator Modulators for Personalized Drug Treatment of Cystic Fibrosis, Drugs, vol.274, issue.1, pp.241-259, 2010.
DOI : 10.2165/11316160-000000000-00000

URL : https://hal.archives-ouvertes.fr/hal-00582426

J. Riordan, J. Rommens, B. Kerem, N. Alon, R. Rozmahel et al., Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA, Science, vol.245, issue.4922, pp.1066-1073, 1989.
DOI : 10.1126/science.2475911

F. Accurso, S. Rowe, J. Clancy, M. Boyle, J. Dunitz et al., Effect of VX?770 in persons with cystic fibrosis and the G551D?CFTR mutation, N Engl J Med, vol.363, 1991.

F. Van-goor, S. Hadida, P. Grootenhuis, B. Burton, J. Stack et al., Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809, Proceedings of the National Academy of Sciences, vol.108, issue.46, pp.18843-18848, 2011.
DOI : 10.1073/pnas.1105787108

H. 50-towbin, T. Staehelin, and J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications., Proceedings of the National Academy of Sciences, vol.76, issue.9, pp.4350-4354, 1979.
DOI : 10.1073/pnas.76.9.4350

N. Duval, E. Krejci, J. Grassi, F. Coussen, J. Massoulie et al., Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid-tailed tetramer, EMBO J, vol.11, pp.3255-3261, 1992.

G. Ellman, K. Courtney, V. Andres, &. Jr, and R. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, vol.7, issue.2, pp.88-95, 1961.
DOI : 10.1016/0006-2952(61)90145-9