C. K. Stover, X. Q. Pham, and A. L. Erwin, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen, Nature, vol.406, issue.6799, pp.959-964, 2000.

R. T. Sadikot, T. S. Blackwell, J. W. Christman, and A. S. Prince, Pneumonia, American Journal of Respiratory and Critical Care Medicine, vol.171, issue.11, pp.1209-1223, 2005.
DOI : 10.1164/rccm.200408-1044SO

L. Saiman and A. Prince, Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells., Journal of Clinical Investigation, vol.92, issue.4, pp.1875-1880, 1993.
DOI : 10.1172/JCI116779

G. B. Pier, M. Grout, and T. S. Zaidi, Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections, Science, vol.271, issue.5245, pp.64-67, 1996.
DOI : 10.1126/science.271.5245.64

G. B. Pier, M. Grout, and T. S. Zaidi, Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung, Proceedings of the National Academy of Sciences, vol.94, issue.22, pp.12088-12093, 1997.
DOI : 10.1073/pnas.94.22.12088

V. Teichgräber, M. Ulrich, and N. Endlich, Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis, Nature Medicine, vol.172, issue.4, pp.382-391, 2008.
DOI : 10.1097/00000542-197705000-00002

T. Ganz, Antimicrobial polypeptides in host defense of the respiratory tract, Journal of Clinical Investigation, vol.109, issue.6, pp.693-697, 2002.
DOI : 10.1172/JCI0215218

M. Berger, R. U. Sorensen, M. F. Tosi, D. G. Dearborn, and G. Döring, Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis., Journal of Clinical Investigation, vol.84, issue.4, pp.1302-1313, 1989.
DOI : 10.1172/JCI114298

V. Marcos, Z. Zhou, and A. O. Yildirim, CXCR2 mediates NADPH oxidase???independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation, Nature Medicine, vol.180, issue.9, pp.1018-1023, 2010.
DOI : 10.1038/nm.2209

H. Matsui, B. R. Grubb, and R. Tarran, Evidence for Periciliary Liquid Layer Depletion, Not Abnormal Ion Composition, in the Pathogenesis of Cystic Fibrosis Airways Disease, Cell, vol.95, issue.7, pp.1005-1015, 1998.
DOI : 10.1016/S0092-8674(00)81724-9

D. Worlitzsch, R. Tarran, and M. Ulrich, Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients, Journal of Clinical Investigation, vol.109, issue.3, pp.317-325, 2002.
DOI : 10.1172/JCI0213870

H. Matsui, M. W. Verghese, and M. Kesimer, Reduced Three-Dimensional Motility in Dehydrated Airway Mucus Prevents Neutrophil Capture and Killing Bacteria on Airway Epithelial Surfaces, The Journal of Immunology, vol.175, issue.2, pp.1090-1099, 2005.
DOI : 10.4049/jimmunol.175.2.1090

A. Livraghi and S. H. Randell, Cystic Fibrosis and Other Respiratory Diseases of Impaired Mucus Clearance, Toxicologic Pathology, vol.30, issue.2, pp.116-129, 2007.
DOI : 10.1152/physrev.00010.2005

H. B. Tang, E. Dimango, and R. Bryan, Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection, Infection & Immunity, vol.64, issue.1, pp.37-43, 1996.

C. Madjdpour, B. Oertli, U. Ziegler, J. M. Bonvini, T. Pasch et al., Lipopolysaccharide induces functional ICAM-1 expression in rat alveolar epithelial cells in vitro, American Journal of Physiology, vol.278, issue.3, pp.572-579, 2000.

A. Filloux, M. Bally, G. Ball, M. Akrim, J. Tommassen et al., Protein secretion in gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria, EMBO Journal, vol.9, issue.13, pp.4323-4329, 1990.

T. L. Yahr, J. Goranson, and D. W. Frank, Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway, Molecular Microbiology, vol.22, issue.5, pp.991-1003, 1996.
DOI : 10.1046/j.1365-2958.1996.01554.x

V. T. Lee, R. S. Smith, S. Tümmler, ]. G. Lory, ´. E. Ball et al., Activities of Pseudomonas aeruginosa Effectors Secreted by the Type III Secretion System In Vitro and during Infection, Infection and Immunity, vol.73, issue.3, pp.1695-1705, 2002.
DOI : 10.1128/IAI.73.3.1695-1705.2005

E. E. Smith, D. G. Buckley, and Z. Wu, Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients, Proceedings of the National Academy of Sciences, vol.103, issue.22, pp.8487-8492, 2006.
DOI : 10.1073/pnas.0602138103

A. Bragonzi, M. Paroni, and A. Nonis, Microevolution during Cystic Fibrosis Lung Infection Establishes Clones with Adapted Virulence, American Journal of Respiratory and Critical Care Medicine, vol.180, issue.2, pp.138-145, 2009.
DOI : 10.1164/rccm.200812-1943OC

I. Bianconi, C. Milani, and . Cigana, Positive signaturetagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection, PLoS Pathogens, vol.7, issue.2, 2011.

D. Nguyen and P. K. Singh, Evolving stealth: Genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections, Proceedings of the National Academy of Sciences, vol.103, issue.22, pp.8305-8306, 2006.
DOI : 10.1073/pnas.0602526103

N. Hoiby, Pseudomonas aeruginosa infection in cystic fibrosis Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis . A survey, Acta Pathologica et Microbiologica Scandinavica Supplement, issue.262, pp.1-96, 1977.

S. Epelman, D. Stack, and C. Bell, Different Domains of Pseudomonas aeruginosa Exoenzyme S Activate Distinct TLRs, The Journal of Immunology, vol.173, issue.3, pp.2031-2040, 2004.
DOI : 10.4049/jimmunol.173.3.2031

C. Erridge, A. Pridmore, A. Eley, J. Stewart, and I. R. Poxton, Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via Toll-like receptor 2, Journal of Medical Microbiology, vol.53, issue.8, pp.735-740, 2004.
DOI : 10.1099/jmm.0.45598-0

T. Flo, L. Ryan, and E. Latz, Involvement of Toll-like Receptor (TLR) 2 and TLR4 in Cell Activation by Mannuronic Acid Polymers, Journal of Biological Chemistry, vol.277, issue.38, pp.35489-35495, 2002.
DOI : 10.1074/jbc.M201366200

E. Amiel, R. R. Lovewell, G. A. O-'toole, D. A. Hogan, and B. Berwin, Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression, Infection and Immunity, vol.78, issue.7, pp.2937-2945, 2010.
DOI : 10.1128/IAI.00144-10

G. Lagoumintzis, M. Christofidou, G. Dimitracopoulos, and F. Paliogianni, Pseudomonas aeruginosa Slime Glycolipoprotein Is a Potent Stimulant of Tumor Necrosis Factor Alpha Gene Expression and Activation of Transcription Activators Nuclear Factor ??B and Activator Protein 1 in Human Monocytes, Infection and Immunity, vol.71, issue.8, pp.4614-4622, 2003.
DOI : 10.1128/IAI.71.8.4614-4622.2003

C. Cigana, L. Curcurùcurcur-`-curcurù, and M. R. Leone, Pseudomonas aeruginosa Exploits Lipid A and Muropeptides Modification as a Strategy to Lower Innate Immunity during Cystic Fibrosis Lung Infection, PLoS ONE, vol.4, issue.12, p.8439, 2009.
DOI : 10.1371/journal.pone.0008439.s005

Z. Zhang, J. P. Louboutin, D. J. Weiner, J. B. Goldberg, and J. M. Wilson, Human Airway Epithelial Cells Sense Pseudomonas aeruginosa Infection via Recognition of Flagellin by Toll-Like Receptor 5, Infection and Immunity, vol.73, issue.11, pp.7151-7160, 2005.
DOI : 10.1128/IAI.73.11.7151-7160.2005

M. Magnusson, R. Tobes, J. Sancho, and E. Pareja, Cutting Edge: Natural DNA Repetitive Extragenic Sequences from Gram-Negative Pathogens Strongly Stimulate TLR9, The Journal of Immunology, vol.179, issue.1, pp.31-35, 2007.
DOI : 10.4049/jimmunol.179.1.31

URL : https://digital.csic.es/bitstream/10261/75483/1/accesoRestringido.pdf

H. Hemmi, O. Takeuchi, and T. Kawai, A Novel Toll-Like Receptor that Recognizes Bacterial DNA, Nature, vol.408, issue.6813, pp.740-745, 2000.
DOI : 10.1385/1-59259-305-4:039

L. Franchi, J. Stoolman, T. D. Kanneganti, A. Verma, R. Ramphal et al., Critical role for Ipaf inPseudomonas aeruginosa-induced caspase-1 activation, European Journal of Immunology, vol.135, issue.11, pp.3030-3039, 2007.
DOI : 10.1002/eji.200737532

T. H. Schroeder, M. M. Lee, and P. W. Yacono, CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-??B translocation, Proceedings of the National Academy of Sciences, vol.99, issue.10, pp.6907-6912, 2002.
DOI : 10.1073/pnas.092160899

C. A. Jr, Approaching the asymptote? Evolution and revolution in immunology, Cold Spring Harbor Symposia on Quantitative Biology, vol.54, issue.1, pp.1-13, 1989.

S. Akira and K. Takeda, Toll-like receptor signalling, Nature Reviews Immunology, vol.303, issue.7, pp.499-511, 2004.
DOI : 10.1038/nri1391

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen Recognition and Innate Immunity, Cell, vol.124, issue.4, pp.783-801, 2006.
DOI : 10.1016/j.cell.2006.02.015

N. Inohara, T. Koseki, and L. D. Peso, Nod1, an Apaf-1-like Activator of Caspase-9 and Nuclear Factor-??B, Journal of Biological Chemistry, vol.274, issue.21, pp.14560-14567, 1999.
DOI : 10.1074/jbc.274.21.14560

Y. Ogura, N. Inohara, A. Benito, F. F. Chen, S. Yamaoka et al., Nod2, a Nod1/Apaf-1 Family Member That Is Restricted to Monocytes and Activates NF-??B, Journal of Biological Chemistry, vol.276, issue.7, pp.4812-4818, 2001.
DOI : 10.1074/jbc.M008072200

S. E. Girardin, I. G. Boneca, and L. A. Carneiro, Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan, Science, vol.300, issue.5625, pp.1584-1587, 2003.
DOI : 10.1126/science.1084677

N. Inohara, Y. Ogura, and A. Fontalba, Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2: IMPLICATIONS FOR CROHN'S DISEASE, Journal of Biological Chemistry, vol.278, issue.8, pp.5509-5512, 2003.
DOI : 10.1074/jbc.C200673200

N. Inohara, M. Chamaillard, C. Mcdonald, and G. Nunez, NOD-LRR PROTEINS: Role in Host-Microbial Interactions and Inflammatory Disease, Annual Review of Biochemistry, vol.74, issue.1, pp.355-383, 2005.
DOI : 10.1146/annurev.biochem.74.082803.133347

J. H. Fritz, R. L. Ferrero, D. J. Philpott, and S. E. Girardin, Nod-like proteins in immunity, inflammation and disease, Nature Immunology, vol.176, issue.12, pp.1250-1257, 2006.
DOI : 10.1016/j.cub.2004.10.027

B. T. Cookson and M. A. Brennan, Pro-inflammatory programmed cell death, Trends in Microbiology, vol.9, issue.3, pp.113-114, 2001.
DOI : 10.1016/S0966-842X(00)01936-3

J. B. Lyczak, C. L. Cannon, and G. B. Pier, Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist1*Address for correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA, Microbes and Infection, vol.2, issue.9, pp.1051-1060, 2000.
DOI : 10.1016/S1286-4579(00)01259-4

C. Alexander and E. T. , Bacterial lipopolysaccharides and innate immunity, Journal of Endotoxin Research, vol.7, issue.3, pp.167-202, 2001.
DOI : 10.1179/096805101101532675

E. Lien, T. K. Means, and H. Heine, Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide, Journal of Clinical Investigation, vol.105, issue.4, pp.497-504, 2000.
DOI : 10.1172/JCI8541

R. Kitchens, Role of CD14 in Cellular Recognition of Bacterial Lipopolysaccharides, Chemical Immunology, vol.74, pp.61-82, 1999.
DOI : 10.1159/000058750

R. K. Ernst, E. C. Yi, and L. Guo, Specific Lipopolysaccharide Found in Cystic Fibrosis Airway Pseudomonas aeruginosa, Science, vol.286, issue.5444, pp.1561-1565, 1999.
DOI : 10.1126/science.286.5444.1561

R. Ernst, A. M. Hajjar, J. H. Tsai, S. M. Moskowitz, C. B. Wilson et al., <I>Pseudomonas aeruginosa</I> lipid A diversity and its recognition by Toll-like receptor 4, Journal of Endotoxin Research, vol.9, issue.6, pp.395-400, 2003.
DOI : 10.1179/096805103225002764

A. M. Firoved, W. Ornatowski, and V. Deretic, Microarray Analysis Reveals Induction of Lipoprotein Genes in Mucoid Pseudomonas aeruginosa: Implications for Inflammation in Cystic Fibrosis, Infection and Immunity, vol.72, issue.9, pp.5012-5018, 2004.
DOI : 10.1128/IAI.72.9.5012-5018.2004

R. Adamo, S. Sokol, G. Soong, M. I. Gomez, and A. Prince, Flagella Activate Airway Epithelial Cells through asialoGM1 and Toll-Like Receptor 2 as well as Toll-Like Receptor 5, American Journal of Respiratory Cell and Molecular Biology, vol.30, issue.5, pp.627-634, 2004.
DOI : 10.1165/rcmb.2003-0260OC

P. Xaplanteri, G. Lagoumintzis, G. Dimitracopoulos, and F. Paliogianni, -induced cytokine production in human monocytes by mannose receptor and TLR2, European Journal of Immunology, vol.42, issue.3, pp.730-740, 2009.
DOI : 10.1002/eji.200838872

X. Huang, R. P. Barrett, S. A. Mcclellan, and L. D. Hazlett, Keratitis, Investigative Opthalmology & Visual Science, vol.46, issue.11, pp.4209-4216, 2005.
DOI : 10.1167/iovs.05-0185

X. Sun, H. Sui, and J. T. Fisher, Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis, Journal of Clinical Investigation, vol.120, issue.9, pp.3149-3160, 2010.
DOI : 10.1172/JCI43052DS1

M. Schirm, S. K. Arora, and A. Verma, Structural and Genetic Characterization of Glycosylation of Type a Flagellin in Pseudomonas aeruginosa, Journal of Bacteriology, vol.186, issue.9, pp.2523-2531, 2004.
DOI : 10.1128/JB.186.9.2523-2531.2004

M. A. Donnelly and T. S. Steiner, Two Nonadjacent Regions in Enteroaggregative Escherichia coli Flagellin Are Required for Activation of Toll-like Receptor 5, Journal of Biological Chemistry, vol.277, issue.43, pp.40456-40461, 2002.
DOI : 10.1074/jbc.M206851200

K. G. Murthy, A. Deb, S. Goonesekera, C. Szabó, and A. L. Salzman, Identification of Conserved Domains in Salmonella muenchen Flagellin That Are Essential for Its Ability to Activate TLR5 and to Induce an Inflammatory Response in Vitro, Journal of Biological Chemistry, vol.279, issue.7, pp.5667-5675, 2004.
DOI : 10.1074/jbc.M307759200

A. Verma, S. K. Arora, S. K. Kuravi, and R. , Roles of Specific Amino Acids in the N Terminus of Pseudomonas aeruginosa Flagellin and of Flagellin Glycosylation in the Innate Immune Response, Infection and Immunity, vol.73, issue.12, pp.8237-8246, 2005.
DOI : 10.1128/IAI.73.12.8237-8246.2005

T. Eaves-pyles, K. Murthy, and L. Liaudet, Flagellin, a Novel Mediator of Salmonella-Induced Epithelial Activation and Systemic Inflammation: I??B?? Degradation, Induction of Nitric Oxide Synthase, Induction of Proinflammatory Mediators, and Cardiovascular Dysfunction, The Journal of Immunology, vol.166, issue.2, pp.1248-1260, 2001.
DOI : 10.4049/jimmunol.166.2.1248

V. Feuillet, S. Medjane, and I. Mondor, Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12487-12492, 2006.
DOI : 10.1073/pnas.0605200103

URL : https://hal.archives-ouvertes.fr/hal-00165595

M. R. Power, Y. Peng, E. Maydanski, J. S. Marshall, and T. J. Lin, The Development of Early Host Response to Pseudomonas aeruginosa Lung Infection Is Critically Dependent on Myeloid Differentiation Factor 88 in Mice, Journal of Biological Chemistry, vol.279, issue.47, pp.49315-49322, 2004.
DOI : 10.1074/jbc.M402111200

R. Ramphal, V. Balloy, M. Huerre, M. Si-tahar, and M. Chignard, TLRs 2 and 4 Are Not Involved in Hypersusceptibility to Acute Pseudomonas aeruginosa Lung Infections, The Journal of Immunology, vol.175, issue.6, pp.3927-3934, 2005.
DOI : 10.4049/jimmunol.175.6.3927

S. J. Skerrett, H. D. Liggitt, A. M. Hajjar, and C. B. Wilson, Cutting Edge: Myeloid Differentiation Factor 88 Is Essential for Pulmonary Host Defense against Pseudomonas aeruginosa but Not Staphylococcus aureus, The Journal of Immunology, vol.172, issue.6, pp.3377-3381, 2004.
DOI : 10.4049/jimmunol.172.6.3377

L. H. Travassos, L. A. Carneiro, and S. E. Girardin, Nod1 Participates in the Innate Immune Response to Pseudomonas aeruginosa, Journal of Biological Chemistry, vol.280, issue.44, pp.36714-36718, 2005.
DOI : 10.1074/jbc.M501649200

L. Franchi, A. Amer, and M. Body, Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1?? in salmonella-infected macrophages, Nature Immunology, vol.160, issue.6, pp.576-582, 2006.
DOI : 10.1038/ni1346

E. A. Miao, E. Andersen-nissen, S. E. Warren, and A. Aderem, TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system, Seminars in Immunopathology, vol.7, issue.1, pp.275-288, 2007.
DOI : 10.1007/s00281-007-0078-z

E. A. Miao, R. K. Ernst, M. Dors, D. P. Mao, and A. Aderem, Pseudomonas aeruginosa activates caspase 1 through Ipaf, Proceedings of the National Academy of Sciences, vol.105, issue.7, pp.2562-2567, 2008.
DOI : 10.1073/pnas.0712183105

F. S. Sutterwala, L. A. Mijares, L. Li, Y. Ogura, B. I. Kazmierczak et al., mediated by the IPAF/NLRC4 inflammasome, The Journal of Experimental Medicine, vol.67, issue.13, pp.3235-3245, 2007.
DOI : 10.1016/S0378-1119(98)00130-9

E. A. Miao, D. P. Mao, and N. Yudkovsky, Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proceedings of the National Academy of Sciences, vol.107, issue.7, pp.3076-3080, 2010.
DOI : 10.1073/pnas.0913087107

E. Mahenthiralingam, M. E. Campbell, and D. P. Speert, Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis, Infection and Immunity, vol.62, issue.2, pp.596-605, 1994.

D. W. Martin, M. J. Schurr, M. H. Mudd, J. R. Govan, B. W. Holloway et al., Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients., Proceedings of the National Academy of Sciences, vol.90, issue.18, pp.8377-8381, 1993.
DOI : 10.1073/pnas.90.18.8377

A. Bragonzi, L. Wiehlmann, and J. Klockgether, Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis, Microbiology, vol.152, issue.11, pp.3261-3269, 2006.
DOI : 10.1099/mic.0.29175-0

D. A. D-'argenio, M. Wu, and L. R. Hoffman, Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients, Molecular Microbiology, vol.155, issue.2, pp.512-533, 2007.
DOI : 10.1111/j.1365-2958.2007.05678.x

L. Hoffman, H. D. Kulasekara, and J. Emerson, Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression, Journal of Cystic Fibrosis, vol.8, issue.1, pp.66-70, 2009.
DOI : 10.1016/j.jcf.2008.09.006

J. L. Burns, R. L. Gibson, and S. Mcnamara, in Young Children with Cystic Fibrosis, The Journal of Infectious Diseases, vol.183, issue.3, pp.444-452, 2001.
DOI : 10.1086/318075

O. Ciofu, B. Riis, T. Pressler, H. E. Poulsen, and N. Høiby, Occurrence of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Patients Is Associated with the Oxidative Stress Caused by Chronic Lung Inflammation, Antimicrobial Agents and Chemotherapy, vol.49, issue.6, pp.2276-2282, 2005.
DOI : 10.1128/AAC.49.6.2276-2282.2005

K. Mathee, O. Ciofu, and C. Sternberg, Mucoid conversion of Pseudomonas aeruginos by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung, Microbiology, vol.145, issue.6, pp.1349-1357, 1999.
DOI : 10.1099/13500872-145-6-1349

A. Bragonzi, D. Worlitzsch, and G. B. Pier, Expresses Alginate in the Lungs of Patients with Cystic Fibrosis and in a Mouse Model, The Journal of Infectious Diseases, vol.192, issue.3, pp.410-419, 2005.
DOI : 10.1086/431516

E. V. Sokurenko, D. L. Hasty, and D. E. Dykhuizen, Pathoadaptive mutations: gene loss and variation in bacterial pathogens, Trends in Microbiology, vol.7, issue.5, pp.191-195, 1999.
DOI : 10.1016/S0966-842X(99)01493-6

M. Jain, D. Ramirez, and R. Seshadri, Type III Secretion Phenotypes of Pseudomonas aeruginosa Strains Change during Infection of Individuals with Cystic Fibrosis, Journal of Clinical Microbiology, vol.42, issue.11, pp.5229-5237, 2004.
DOI : 10.1128/JCM.42.11.5229-5237.2004

A. Oliver, R. Cantón, P. Campo, F. Baquero, and J. Bì-azquez, High Frequency of Hypermutable Pseudomonas aeruginosa in Cystic Fibrosis Lung Infection, Science, vol.288, issue.5469, pp.1251-1253, 2000.
DOI : 10.1126/science.288.5469.1251

D. Young, T. Hussell, G. Dougan, E. V. Sokurenko, V. Chesnokova et al., Chronic bacterial infections: living with unwanted guests Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin, Nature Immunology Proceedings of the National Academy of Sciences of the United States of America, vol.3, issue.95 15, pp.1026-1032, 1998.

E. R. Moxon and P. A. Murphy, Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism, Proceedings of the National Academy of Sciences, vol.75, issue.3, pp.1534-1536, 1978.
DOI : 10.1073/pnas.75.3.1534

N. S. Akopyants, K. A. Eaton, and D. E. Berg, Adaptive mutation and cocolonization during Helicobacter pylori infection of gnotobiotic piglets, Infection & Immunity, vol.63, issue.1, pp.116-121, 1995.

M. A. Luzar, M. J. Thomassen, and T. C. Montie, Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical condition, Infection & Immunity, vol.50, issue.2, pp.577-582, 1985.

R. K. Ernst, S. M. Moskowitz, and J. C. Emerson, Isolated from the Airways of Patients with Cystic Fibrosis, The Journal of Infectious Diseases, vol.196, issue.7, pp.1088-1092, 2007.
DOI : 10.1086/521367

A. M. Hajjar, R. K. Ernst, J. H. Tsai, C. B. Wilson, and S. I. Miller, Human Toll-like receptor 4 recognizes host-specific LPS modifications, Nature Immunology, vol.3, issue.4, pp.354-359, 2002.
DOI : 10.1038/ni777

J. A. Simpson, S. E. Smith, and R. T. Dean, Alginate Inhibition of the Uptake of Pseudomonas aeruginosa by Macrophages, Microbiology, vol.134, issue.1, pp.29-36, 1988.
DOI : 10.1099/00221287-134-1-29

J. A. Simpson, S. E. Smith, and R. T. Dean, Alginate may accumulate in cystic fibrosis lung because the enzymatic and free radical capacities of phagocytic cells are inadequate for its degradation, Biochemistry & Molecular Biology International, vol.30, issue.6, pp.1021-1034, 1993.

N. Høiby, H. Krogh-johansen, C. Moser, Z. Song, O. Ciofu et al., Pseudomonas aeruginosa and the in vitroand in vivo biofilm mode of growth, Microbes and Infection, vol.3, issue.1, pp.23-35, 2001.
DOI : 10.1016/S1286-4579(00)01349-6

. Boado, Pseudomonas aeruginosa flagellin and alginate elicit very distinct gene expression patterns in airway epithelial cells: implications for cystic fibrosis disease, Journal of Immunology, vol.173, issue.9, pp.5659-5670, 2004.

J. R. Govan, J. A. Fyfe, and N. R. Baker, Heterogeneity and Reduction in Pulmonary Clearance of Mucoid Pseudomonas aeruginosa, Clinical Infectious Diseases, vol.5, issue.Supplement 5, pp.874-879, 1983.
DOI : 10.1093/clinids/5.Supplement_5.S874

J. C. Boucher, H. Yu, M. H. Mudd, and V. Deretic, Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection, Infection & Immunity, vol.65, issue.9, pp.3838-3846, 1997.

M. Jain, D. Ramirez, and R. Seshadri, Type III Secretion Phenotypes of Pseudomonas aeruginosa Strains Change during Infection of Individuals with Cystic Fibrosis, Journal of Clinical Microbiology, vol.42, issue.11, pp.5229-5237, 2004.
DOI : 10.1128/JCM.42.11.5229-5237.2004

C. Fung, S. Naughton, and L. Turnbull, Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum, Journal of Medical Microbiology, vol.59, issue.9, pp.1089-1100, 2010.
DOI : 10.1099/jmm.0.019984-0

A. K. Jones, N. B. Fulcher, and G. J. Balzer, Activation of the Pseudomonas aeruginosa AlgU Regulon through mucA Mutation Inhibits Cyclic AMP/Vfr Signaling, Journal of Bacteriology, vol.192, issue.21, pp.5709-5717, 2010.
DOI : 10.1128/JB.00526-10