
HAL Id: pasteur-00975925
https://riip.hal.science/pasteur-00975925

Submitted on 9 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Catalytic intermediates of cytochrome bd terminal
oxidase at steady-state: ferryl and oxy-ferrous species

dominate.
Vitaliy B Borisov, Elena Forte, Paolo Sarti, Alessandro Giuffrè

To cite this version:
Vitaliy B Borisov, Elena Forte, Paolo Sarti, Alessandro Giuffrè. Catalytic intermediates of cytochrome
bd terminal oxidase at steady-state: ferryl and oxy-ferrous species dominate.. Biochimica et Biophys-
ica Acta (BBA) - Enzymology, 2011, 1807 (5), pp.503-9. �10.1016/j.bbabio.2011.02.007�. �pasteur-
00975925�

https://riip.hal.science/pasteur-00975925
https://hal.archives-ouvertes.fr


Biochimica et Biophysica Acta 1807 (2011) 503–509

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r.com/ locate /bbab io
Catalytic intermediates of cytochrome bd terminal oxidase at steady-state: Ferryl and
oxy-ferrous species dominate

Vitaliy B. Borisov a,1, Elena Forte b,1, Paolo Sarti b, Alessandro Giuffrè b,⁎
a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russian Federation
b Department of Biochemical Sciences, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome,
I-00185 Rome, Italy
Abbreviations: cyt bd, cytochrome bd; DTT, dithiot
methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone; O, f
heme d; P, peroxy heme d; F, ferryl heme d; R, ferrous u
⁎ Corresponding author at: Istituto di Biologia e P

Nazionale delle Ricerche, c/o Dipartimento di Scienze Bio
di Roma, Piazzale Aldo Moro 5, I-00185 Rome, Italy. Fax

E-mail address: alessandro.giuffre@uniroma1.it (A. G
1 These authors contributed equally.

0005-2728/$ – see front matter © 2011 Elsevier B.V. Al
doi:10.1016/j.bbabio.2011.02.007
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 27 January 2011
Accepted 15 February 2011
Available online 23 February 2011

Keywords:
Respiration
Chlorin
Catalytic turnover
Reaction mechanism
Hemoprotein
Oxygen chemistry
The cytochrome bd ubiquinol oxidase from Escherichia coli couples the exergonic two-electron oxidation of
ubiquinol and four-electron reduction of O2 to 2H2O to proton motive force generation by transmembrane
charge separation. The oxidase contains two b-type hemes (b558 and b595) and one heme d, where O2 is
captured and converted to water through sequential formation of a few intermediates. The spectral features of
the isolated cytochrome bd at steady-state have been examined by stopped-flowmultiwavelength absorption
spectroscopy. Under turnover conditions, sustained by O2 and dithiothreitol (DTT)-reduced ubiquinone, the
ferryl and oxy-ferrous species are the mostly populated catalytic intermediates, with a residual minor fraction
of the enzyme containing ferric heme d and possibly one electron on heme b558. These findings are
unprecedented and differ from those obtained with mammalian cytochrome c oxidase, in which the oxygen
intermediates were not found to be populated at detectable levels under similar conditions [M.G. Mason, P.
Nicholls, C.E. Cooper, The steady-state mechanism of cytochrome c oxidase: redox interactions betweenmetal
centres, Biochem. J. 422 (2009) 237–246]. The data on cytochrome bd are consistent with the observation that
the purified enzyme has the heme d mainly in stable oxy-ferrous and ferryl states. The results are here
discussed in the light of previously proposed models of the catalytic cycle of cytochrome bd.
hreitol; Q1, 2,3-dimethoxy-5-
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1. Introduction

Terminal oxidases in the prokaryotic and eukaryotic respiratory
chain catalyze the four-electron reduction of molecular oxygen to
water. The members of the two major families of terminal oxidases,
heme-copper oxidases and cytochrome bd (cyt bd) oxidases couple
this exergonic chemical reaction to the generation of proton motive
force. Differently from heme-copper oxidases, cyt bd is not a proton
pump and creates membrane potential via transmembrane charge
separation [1–7]. Cyt bd is widely distributed in prokaryotes where,
along with its bioenergetic function, it performs a number of vital
physiological functions. Cyt bd helps bacteria to survive under low
oxygen pressure and other “stress” conditions [8–11]. It protects
oxygen-labile enzymes by acting as oxygen scavenger [12–19]. Cyt
bd supports disulfide bond formation upon protein folding [20] and
provides the oxidizing power required in the penultimate step of
heme biosynthesis [21]. Relevant to microbial resistance, cyt bd also
contributes to hydrogen peroxide detoxification [22] and enhances
microbial tolerance to nitric oxide [23–28]. Evidence for a positive
correlation between virulence of bacterial pathogens responsible
for various diseases and the expression level of cyt bd has been accu-
mulated [8–10,29–34].

Cyt bd is an integral membrane protein with two different sub-
units carrying three redox-active centers, two iron protoporphyrins
IX (hemes b558 and b595) and one iron chlorin (heme d) (reviewed in
[35–41]). The X-ray structure of cyt bd is not yet available, however
it is suggested that all the heme groups are located closer to the
periplasmic side of the membrane [42,43]. The low-spin hexa-
coordinate heme b558 seems to be directly involved in the oxidation
of the respiratory substrate, ubiquinol or menaquinol [44–48]. The
high-spin heme d is the site where the oxygen molecule binds tightly
to be subsequently reduced to water. The high-spin penta-coordinate
heme b595 and heme d probably form a di-heme oxygen-reducing site
somewhat analogous to the heme-Cu active site in heme-copper
oxidases [3,49–56].

Cytochromes bd and heme-copper oxidases are suggested to share
the key intermediates of the catalytic cycle. Based on previous reports
[4,57–59], the cyt bd catalytic cycle (Fig. 1) is postulated to proceed
through the following steps: R→OXY→P→F→R. Differently from
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heme-copper oxidases, the fully oxidized species (b5583+b5953+d3+―OH)
has been proposed not to be an intermediate of the cyt bd catalytic
cycle [59], although it can be generated in vitro [2,28,60]. The
uncomplexed species with both one (b5583+b5953+d2+) and three
(b5582+b5952+d2+) electrons can be obtained under anaerobic condi-
tions. The one-electron-reduced OXY species (b5583+b5953+d2+―O2)
predominates in the enzyme isolated under aerobic conditions, as the
affinity of ferrous heme d for oxygen is high [61,62]. A very short-lived
three-electron reduced OXY species (b5582+b5952+d2+–O2) was ob-
served in flow-flash studies [2,4,62,63]. In these studies, sequential
formation of a transient peroxy complex (P, b5582+b5953+d3+―OOH)
[4,5] and ferryl species (F, b5583+b5953+d4+=O2−) [2,4,5,63] was also
documented. A noticeable fraction of F is also seen in the “as-prepared”
enzyme, i.e., the enzyme obtained at the end of the purification
procedure. F can also be produced in vitro by addition of excess
hydrogen peroxide to cyt bd in the O or OXY state [2,24,64,65].

In the presentwork, we studied the steady-state behavior of isolated
cyt bd from Escherichia coli at ambient temperature using stopped-
flow spectrophotometry and found that, differently from mammalian
cytochrome c oxidase [66], in cyt bd the OXY and F catalytic inter-
mediates are mostly populated under steady-state conditions.

2. Materials and methods

2.1. Chemicals and enzyme purification

DTT, Q1, dithionite and N-lauroyl-sarcosine were from Sigma-
Aldrich. Recombinant cyt bdwas expressed in the E. coli strain GO105/
pTK1 devoid of cytochrome bo3 and cyt bd oxidases according to
Ref [67]. Enzyme purification was carried out following the protocol
described in Refs [68,69]. As isolated, the enzyme contains ferric
hemes b558 and b595, and heme d as a mixture of O2-bound ferrous
(OXY), ferryl (F) and most likely ferric (O) states. Cyt bd concentra-
tion was determined from the fully reduced-minus-“as isolated”
difference absorption spectrum using Δ�628–607=10.8 mM−1 cm−1

[51].

2.2. Stopped-flow spectroscopy

Stopped-flow experiments were carried out with an instrument
(DX.17MV, Applied Photophysics, Leatherhead, UK), equipped with a
photodiode array detector (light path=1 cm). Assays were per-
formed at 20 °C in 50 mMK/phosphate buffer pH 7.3, 0.05% N-lauroyl-
Fig. 1. Scheme of the catalytic cycle of cyt bd with the indication of the redox and the
ligation state of heme d at the active site. Protonation and electronation reactions as
well as hemes b558 and b595 are not shown for simplicity.
sarcosine. Typically, 20 μM “as isolated” cyt bd was degassed,
anaerobically reduced with 10 mM DTT and 0.1 ÷ 1.2 mM Q1, and
mixed in a 1:1 ratiowithO2-equilibrated buffer (containing ~ 1.35 mM
O2). Afterwards, the reaction was followed up to 500 s by collecting
500 absorption spectra according to a logarithmic time scale, with
an acquisition time of 4 ms/spectrum and a wavelength resolution
of ~2.1 nm. To prevent possible photochemical artefacts, UV light in
the incident beam was filtered in these experiments.

2.3. Spectral deconvolution analysis

Spectral deconvolution analysis was carried out using the “left
matrix division” operator implemented in the software MATLAB
(The Mathworks, South Natick, MA). Given a set of reference optical
components, this operator yields the linear combination of reference
spectra best-fitting anexperimental spectrum in the least squares sense.
Spectral deconvolution analysis was carried out after subtracting the
spectrum of the fully reduced enzyme from the experimental set of
time-resolved spectra, acquired after stopped-flow mixing reduced cyt
bdwithO2-equilibrated buffer. For data analysis, the following reference
difference spectra were utilized: 1) “heme b558”=[Feb5583+]-minus-
[Feb5582+]; 2) “heme b595”=[Feb5953+]-minus-[Feb5952+]; 3) “O”=
[Fed3+]-minus-[Fed2+]; 4) “F”=[Fed4+=O2-]-minus=[Fed2+]; 5)
“OXY”=[Fed2+–O2]-minus-[Fed2+]. Spectra 1), 2) and 3) were
taken from [70] and spectrum 4) from [64]. Spectrum 5) was
obtained from the absorption changes observed during deoxygen-
ation of the “as isolated” enzyme upon O2 removal after addition of
catalytic amounts of glucose oxidase in the presence of excess
glucose.

3. Results

Peculiarly, due to the high O2-affinity of ferrous heme d [61,62], cyt bd
is not isolated as fully oxidized, but rather in a heterogeneous form in
which the hemes b558 and b595 are oxidized and heme d is a mixture of
ferrous oxygenated (OXY), ferryl (F) and likely ferric (O) states. The “as
isolated” enzyme can be easily converted into the fully reduced
uncomplexed state after addition of an excess of reductants (dithionite
or DTT plus Q1). The absorption spectra of the “as isolated” and fully
reduced cyt bd exhibit well distinct, characteristic optical features (Fig. 2,
top panel). Of relevance for the present study, the O2-reactive heme d
absorbs in the visible region at wavelengths (N600 nm) where the
optical contributions of the hemes b558 and b595 are negligible. Thismakes
cyt bd an ideal system to investigate by absorption spectroscopy the redox
and ligation state of the O2-reactive heme d andmeasure the steady-state
occupancy of the catalytic O2 intermediates during turnover.

Upon rapidly mixing reduced cyt bd with O2-equilibrated buffer
in the presence of excess DTT and Q1 (5 and 0.6 mM after mixing,
respectively), the enzyme during turnover undergoes noticeable ab-
sorption changes in the visible region, involving both hemes b and
heme d (Fig. 2, bottom panel). By inspection of the raw data collected
up to 500 s after mixing, it appears that part of the reaction occurs
during the instrumental dead-time (a few ms), followed by at least
three major kinetic phases: an oxidation phase (b100 ms), a steady-
state phase (up to ~30 s), where by definition only minor absorption
changes are observable, and finally after O2-exhaustion a reduction
phase that eventually restores the fully reduced enzyme. To acquire
information on the catalytic intermediates populated during turnover
and their actual occupancy, time-resolved spectral data in Fig. 2 were
converted into difference spectra with reference to the fully reduced
enzyme, i.e., the most homogeneous form of the enzyme that can be
obtained experimentally. Afterwards, the contribution of each optical
species was deconvoluted using the reference spectra depicted in
Fig. 3A. These reference spectra include the oxidized-minus-reduced
spectrum of the hemes b558 and b595 and the difference spectra of
ferric (O), ferryl (F) and ferrous oxygenated (OXY) heme d relative to



Fig. 2. Top: Absorption spectra of 10 μM cyt bd, “as isolated” (thin line) and in the fully
reduced state (thick line). Bottom: Time-resolved absorption spectra collected up to
500 s after stopped-flowmixing O2-equilibrated buffer with cyt bd, pre-reduced by DTT
and Q1. Concentrations after mixing: 10 μM enzyme; 5 mM DTT; 600 μM Q1. T = 20 °C.

Fig. 3. A: Optical components (normalized to 1 μM enzyme): “heme b558”=[Feb5583+]-
minus-[Feb5582+]; “heme b595”=[Feb5953+]-minus-[Feb5952+]; “O”=[Fed3+]-minus-[Fed2+];
“F”=[Fed4+=O2−]-minus-[Fed2+]; “OXY”=[Fed2+―O2]-minus-[Fed2+]. B: Percent occu-
pancy of the optical species depicted in A, as obtained from the analysis of the spectra in the
bottom panel of Fig. 2.
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the reduced uncomplexed heme. It is worth to stress that the F species
is the only one contributing at λ N670 nm and contribution appears
important in amplitude. This makes detection of such a catalytic
intermediate relatively straightforward, at least in comparison with
the well known aa3-type heme-copper respiratory oxidases in which,
due to optical overlap between heme a and heme a3, detection of
the F intermediate under steady-state conditions is definitely more
challenging.

Fig. 3B shows the output of the deconvolution analysis carried out
on the data in Fig. 2 (bottom panel). According to this analysis, in the
steady state phase (100 ms–30 s), hemes b558 and b595 are mostly
oxidized (N70% and N90%, respectively), whereas up to 80% of heme d
is almost equally distributed between the F and OXY states, with a
residual ~ 20% ferric heme d (O). Both the pre-steady state phase and
enzyme reduction following the steady-state phase proceed according
to complex kinetic profiles. Both hemes b558 and b595 are oxidized to a
significant extent within the stopped-flow dead-time and then adjust
to their steady-state redox level within 100 ms. As expected, when O2

vanishes (at ~30s), the steady-state phase ends and the enzyme
eventually starts to be reduced, but full reduction is only achieved
within 500 s, because there is a minor fraction of hemes b558 and b595
(~30% each) that is reduced only slowly. Despite kinetic complexity, it
is important to notice that at steady-state the large majority of the
enzyme exhibits heme d in the F and OXY state and this represents
the main result obtained in the present study.

Since detection of these intermediates under steady-state is
unprecedented, as a control we attempted to systematically fit spectral
data with all heme d spectral components, but one. As shown in Fig. 4A,
the steady-state spectrum collected at ~10 s (dotted) is nicely fitted if
the complete set of reference spectra is linearly combined. The steady-
state spectrum, however, cannot be adequately fitted when the refer-
ence spectrum of either F orOXY is omitted (Fig. 4B and C, respectively),
and lower quality fits are obtained if the reference spectrum of the O
species is excluded from the analysis (Fig. 4D). These results strongly
suggest that all these intermediates are populated at a significant extent
when the enzyme is in turnover with an excess of reductants and O2.

The effect of Q1 concentration on the steady-state occupancy
of each intermediate was assayed by carrying out the described ex-
periment at [Q1]=0.05, 0.15, 0.3 and 0.6 mM, keeping DTT con-
centration constant and equal to 5 mM. Fig. 5 shows the time course
relative to each optical component, as obtained from spectral de-
convolution of the data collected under different “reductive pressure,”
i.e., at different Q1 concentrations. It may be appreciated that, as Q1

concentration lowers, a faster pre-steady state oxidation of hemes
b558 and b595 and a longer steady-state phase are observed; at the
lowest Q1 concentration assayed (0.05 mM), the steady-state phase
was so long that exceeded the time window of observation (500 s).
In contrast, no major changes were observed in terms of steady-
state occupancy of each optical component by changing [Q1]; only
heme b558 modestly increased its steady-state oxidation level upon
lowering Q1 concentration (Fig. 5).

4. Discussion

The data clearly show that in the Q1H2/O2 oxidoreductase reac-
tion catalyzed by E. coli cyt bd oxidase under near-physiological

image of Fig.�2
image of Fig.�3


Fig. 4. Best fit of the steady-state spectrum (dotted) acquired at 10 s after mixing reduced cyt bdwith O2-equilibrated buffer (experimental conditions as in Fig. 2). Fitting was carried
out by using the whole optical components set (panel A) or the same set without the reference spectrum of F (panel B), OXY (panel C) or O (panel D) species.
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conditions, theOXY and F species are themost populated steady-state
turnover intermediates (~40% each). The results are in agreement
with catalytic cycle models proposed earlier [4,57–59] (see also
Fig. 1). The data also validate the intermediates observed by inves-
tigating the reaction of the fully reduced cyt bd with oxygen in flow-
flash single turnover experiments, i.e. under somewhat artificial, non-
physiological conditions [2,4,5,63]. Moreover, detection of the
OXY and F intermediates at steady-state is consistent with the
observation that, in the ‘as-prepared’ isolated enzyme or in cyt bd-
containing native bacterial membranes, most of heme d exhibits
the spectral features characteristic of the OXY and F states.

Overall, the data are compatible with the proposal by Yang et al. [59]
that the intermediates populated in the cyt bd catalytic cycle are
characterized by an odd number of electrons relative to the fully ferric
form(O, b5583+ b595

3+ d3+―OH), i.e., that the reaction cycle runs through the
three-electron reduced species (R3, b5582+ b595

2+ d2+), the single-electron
reduced O2-bound species (OXY, b5583+ b595

3+ d2+―O2) and a one-electron
deficient ferryl intermediate (F, b5583+ b595

3+ d4+=O2−). The steady-state
OXY and F species observed in our experiments most likely are the
above-mentioned intermediates, and it is not surprising that, based on
its high reactivity with O2, R3 is not populated at detectable levels in
steady-state.

At the same time, the analysis shows that in addition to OXY and
F, enzyme species with ferric heme d (O) are also populated up to
~20% at steady-state (Figs. 3B and 5). At first glance, this finding may
appear inconsistent with the proposal that the fully oxidized enzyme
is not involved in the cyt bd catalytic cycle under physiological
conditions [59]. However, analysis of the redox state of hemes b
shows that at steady-state around 20% cyt bd contains reduced
heme b558 (Figs. 3B and 5). In principle, this fraction of the enzyme
may contain heme d in any of the states detected at steady-state
(OXY, F orO). On the other hand, enzyme species with F or OXY heme
d and reduced heme b558 have a little chance to accumulate in turn-
over. Like in heme-copper oxidases, the F intermediate of cytochrome
bdmost likely has a very high redox potential (~ +1 V), therefore the
F species with an electron located on heme b558 is expected to be very
unstable and quickly convert into all-ferric form of the enzyme,
provided that protons are available:

b2+558 b
3+
595 d

4+=O2− Fð Þ→b3+558 b
3+
595 d

3+
–OH Oð Þ

Similarly, the OXY species with an electron located on heme b558
would also be unstable, yielding the P state:

b2+558 b
3+
595 d

2+
–O2 OXYð Þ→b3+558 b

3+
595 d

3+
–OOH Pð Þ

Hencewe conclude that the specieswith reduced heme b558 observed
in turnover has the following structure: b558

2+ b595
3+ d3+―OH (herein

referred to as ‘O1’). Based on this finding, we propose a modified scheme
of the catalytic cycle of cyt bd, that includes such a species (Fig. 6).Why in
the presence of excess O2 doesO1 accumulate at a detectable level (~20%)
rather than being quickly converted into the one-electron OXY species?

b2+558 b
3+
595 d3+–OH + O2→b3+558 b

3+
595 d2+–O2 + H2O

� �

A possible explanation is that the electron transfer from heme
b558 to ferric heme d may be rate-limited due to reorganization of
the heme d coordination sphere. The reorganization may comprise
conversion of the heme-bound hydroxyl group into water or,
alternatively, binding/replacement of an endogenous protein ligand
at heme d. The latter scenario would be consistent with the proposal
that, upon enzyme reduction, the heme d iron binds an endogenous π-
acceptor protein ligand [71]. Further work is needed to clarify this
issue.

In this study, we also tried to estimate a possible contribution of
the P species to the overall population of the steady-state catalytic
intermediates. As a model we attempted to use the kinetic spectrum
of P formation as obtained earlier by flow-flash [4]. The analysis

image of Fig.�4


Fig. 6. Plausible scheme of the cyt bd catalytic cycle based on the results of the present study.

Fig. 5. Percent occupancy of each optical component as measured with cyt bd in turnover at increasing [Q1]. Concentrations after mixing: 10 μM enzyme; 5 mM DTT; 50 μM (solid),
150 μM (dashed), 300 μM (dotted) or 600 μM (dash-dotted) Q1.
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suggests that the P species likely does not contribute significantly at
steady-state (data not shown). This is not surprising because P
quickly decays to the F intermediate, without requiring electron
supply from quinol (Fig. 6).

Finally, it is worth to notice that the results herein achieved with
cyt bd clearly differ from those obtained earlier under similar
conditions with mammalian cytochrome c oxidase, using cytochrome
c as the electron donor [66]. In that study it was shown that the
steady-state occupancy of the oxygen intermediates, particularly of
the two different ferryl forms (called P and F), is very low (b10%,
[66]). This may be due to differences in both the nature of the utilized
respiratory substrates (cytochrome c versus ubiquinol) and/or
intrinsic structural-functional properties of the two enzymes.
5. Conclusions

We have shown that, when cyt bd from E. coli is in turnover with
ubiquinol and O2, the enzyme intermediates detected at steady-state
are the OXY and F species (~40% each) with oxidized hemes b and, to

image of Fig.�6
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a lesser extent (~20%), a species with ferric heme d and possibly one
electron on heme b558 (O1).
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