A. Puustinen, M. Finel, T. Haltia, R. B. Gennis, and M. Wikström, Properties of the two terminal oxidases of Escherichia coli, Properties of the two terminal oxidases of Escherichia coli, pp.3936-3942, 1991.
DOI : 10.1021/bi00230a019

I. Belevich, V. B. Borisov, J. Zhang, K. Yang, A. A. Konstantinov et al., Time-resolved electrometric and optical studies on cytochrome bd suggest a mechanism of electron-proton coupling in the di-heme active site, Proc. Natl Acad. Sci. USA, pp.3657-3662, 2005.
DOI : 10.1073/pnas.0405683102

I. Belevich, V. B. Borisov, and M. I. Verkhovsky, Discovery of the True Peroxy Intermediate in the Catalytic Cycle of Terminal Oxidases by Real-time Measurement, Journal of Biological Chemistry, vol.282, issue.39, pp.282-28514, 2007.
DOI : 10.1074/jbc.M705562200

J. F. Kolonay-jr and R. J. Maier, Formation of pH and potential gradients by the reconstituted Azotobacter vinelandii cytochrome bd respiratory protection oxidase., Journal of Bacteriology, vol.179, issue.11, pp.3813-3817, 1997.
DOI : 10.1128/jb.179.11.3813-3817.1997

Y. V. Bertsova, A. V. Bogachev, and V. P. Skulachev, Generation of protonic potential by the bd-type quinol oxidase of Azotobacter vinelandii, FEBS Lett, vol.414, pp.369-372, 1997.

A. D. Baughn and M. H. Malamy, The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen, Nature, vol.427, issue.6973, pp.441-444, 2004.
DOI : 10.1038/nature02285

L. Shi, C. D. Sohaskey, B. D. Kana, S. Dawes, R. J. North et al., Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration, Proc. Natl Acad. Sci. USA, pp.15629-15634, 2005.
DOI : 10.1073/pnas.0507850102

S. Loisel-meyer, M. P. Jimenez-de-bagues, S. Kohler, J. P. Liautard, and V. , Jubier-Maurin, Differential use of the two high-oxygen-affinity terminal oxidases of Brucella suis for in vitro and intramacrophagic multiplication, Infect. Immun, pp.73-7768, 2005.

S. A. Jones, F. Z. Chowdhury, A. J. Fabich, A. Anderson, D. M. Schreiner et al., Respiration of Escherichia coli in the Mouse Intestine, Infection and Immunity, vol.75, issue.10, pp.75-4891, 2007.
DOI : 10.1128/IAI.00484-07

M. J. Kelly, R. K. Poole, M. G. Yates, and C. Kennedy, Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air., Journal of Bacteriology, vol.172, issue.10, pp.172-6010, 1990.
DOI : 10.1128/jb.172.10.6010-6019.1990

S. Hill, S. Viollet, A. T. Smith, and . Anthony, Roles for enteric d-type cytochrome oxidase in N2 fixation and microaerobiosis., Journal of Bacteriology, vol.172, issue.4, pp.172-2071, 1990.
DOI : 10.1128/jb.172.4.2071-2078.1990

A. Smith, C. Hill, and . Anthony, The purification, characterization and role of the dtype cytochrome oxidase of Klebsiella pneumoniae during nitrogen fixation, J. Gen. Microbiol, pp.136-171, 1990.

R. D. Mello, S. Hill, and R. K. Poole, Determination of the oxygen affinities of terminal oxidases in Azotobacter vinelandii using the deoxygenation of oxyleghaemoglobin and oxymyoglobin: cytochrome bd is a low-affinity oxidase, pp.140-1395, 1994.

P. A. Kaminski, C. L. Kitts, Z. Zimmerman, and R. A. Ludwig, Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb 3 (cytochrome c) terminal oxidases for symbiotic N 2 fixation, J. Bacteriol, pp.178-5989, 1996.

N. S. Juty, F. Moshiri, M. Merrick, C. Anthony, and S. Hill, The Klebsiella pneumoniae cytochrome bd' terminal oxidase complex and its role in microaerobic nitrogen fixation, Microbiology, vol.143, issue.8, pp.2673-2683, 1997.
DOI : 10.1099/00221287-143-8-2673

R. K. Poole and S. Hill, Respiratory protection of nitrogenase activity in Azotobacter vinelandii?roles of the terminal oxidases, Biosci. Rep, vol.17, pp.307-317, 1997.

Y. V. Bertsova, O. V. Demin, and A. V. Bogachev, Respiratory protection of nitrogenase complex in Azotobacter vinelandii, Usp. biologicheskoj khimii Russ, pp.45-205, 2005.

M. Bader, W. Muse, D. P. Ballou, C. Gassner, and J. C. , Oxidative Protein Folding Is Driven by the Electron Transport System, Cell, vol.98, issue.2, pp.217-227, 1999.
DOI : 10.1016/S0092-8674(00)81016-8

K. Mobius, R. Arias-cartin, D. Breckau, A. L. Hannig, K. Riedmann et al., Heme biosynthesis is coupled to electron transport chains for energy generation, Proc. Natl Acad. Sci. USA, pp.10436-10441, 2010.
DOI : 10.1073/pnas.1000956107

V. B. Borisov, A. I. Davletshin, and A. A. Konstantinov, Peroxidase activity of cytochrome bd from Escherichia coli, Biochemistry (Moscow), vol.75, issue.4, pp.428-4368, 2010.
DOI : 10.1134/S000629791004005X

V. B. Borisov, E. Forte, A. A. Konstantinov, R. K. Poole, P. Sarti et al., with nitric oxide, FEBS Letters, vol.124, issue.1-2, pp.201-204, 2004.
DOI : 10.1016/j.febslet.2004.09.013

V. B. Borisov, E. Forte, P. Sarti, M. Brunori, A. A. Konstantinov et al., terminal oxidase, FEBS Letters, vol.273, issue.20, pp.4823-4826, 2006.
DOI : 10.1016/j.febslet.2006.07.072

URL : https://hal.archives-ouvertes.fr/pasteur-00975925

V. B. Borisov, E. Forte, P. Sarti, M. Brunori, A. A. Konstantinov et al., Redox control of fast ligand dissociation from Escherichia coli cytochrome bd, Biochemical and Biophysical Research Communications, vol.355, issue.1, pp.355-97, 2007.
DOI : 10.1016/j.bbrc.2007.01.118

E. Forte, V. B. Borisov, A. A. Konstantinov, M. Brunori, A. Giuffrè et al., Cytochrome bd, a key oxidase in bacterial survival and tolerance to nitrosative stress, Ital. J. Biochem, pp.56-265, 2007.

M. G. Mason, M. Shepherd, P. Nicholls, P. S. Dobbin, K. S. Dodsworth et al., Cytochrome bd confers nitric oxide resistance to Escherichia coli, Nature Chemical Biology, vol.103, issue.2, pp.94-96, 2009.
DOI : 10.1038/nchembio.135

V. B. Borisov, E. Forte, A. Giuffrè, A. Konstantinov, and P. Sarti, Reaction of nitric oxide with the oxidized di-heme and heme???copper oxygen-reducing centers of terminal oxidases: Different reaction pathways and end-products, Journal of Inorganic Biochemistry, vol.103, issue.8, pp.1185-1187, 2009.
DOI : 10.1016/j.jinorgbio.2009.06.002

S. S. Way, S. Sallustio, R. S. Magliozzo, and M. B. Goldberg, Impact of either elevated or decreased levels of cytochrome bd expression on Shigella flexneri virulence, J. Bacteriol, pp.181-1229, 1999.

S. Endley, D. Mcmurray, and T. A. Ficht, Interruption of the cydB Locus in Brucella abortus Attenuates Intracellular Survival and Virulence in the Mouse Model of Infection, Journal of Bacteriology, vol.183, issue.8, pp.2454-2462, 2001.
DOI : 10.1128/JB.183.8.2454-2462.2001

Y. Yamamoto, C. Poyart, P. Trieu-cuot, G. Lamberet, A. Gruss et al., Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence, Molecular Microbiology, vol.41, issue.2, pp.56-525, 2005.
DOI : 10.1111/j.1365-2958.2005.04555.x

L. Zhang-barber, A. K. Turner, G. Martin, G. Frankel, G. Dougan et al., Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium growth and colonization., Journal of Bacteriology, vol.179, issue.22, pp.179-7186, 1997.
DOI : 10.1128/jb.179.22.7186-7190.1997

A. K. Turner, L. Z. Barber, P. Wigley, S. Muhammad, M. A. Jones et al., Contribution of Proton-Translocating Proteins to the Virulence of Salmonella enterica Serovars Typhimurium, Gallinarum, and Dublin in Chickens and Mice, Infection and Immunity, vol.71, issue.6, pp.71-3392, 2003.
DOI : 10.1128/IAI.71.6.3392-3401.2003

M. H. Larsen, B. H. Kallipolitis, J. K. Christiansen, J. E. Olsen, and H. Ingmer, The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes, Molecular Microbiology, vol.180, issue.6, pp.61-1622, 2006.
DOI : 10.1046/j.1365-2958.2000.02076.x

B. L. Trumpower and R. B. Gennis, Energy Transduction by Cytochrome Complexes in Mitochondrial and Bacterial Respiration: The Enzymology of Coupling Electron Transfer Reactions to Transmembrane Proton Translocation, Annual Review of Biochemistry, vol.63, issue.1, pp.63-675, 1994.
DOI : 10.1146/annurev.bi.63.070194.003331

S. Junemann, Cytochrome bd terminal oxidase1All amino acid numbering refers to the E. coli enzyme.1, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1321, issue.2, pp.107-127, 1997.
DOI : 10.1016/S0005-2728(97)00046-7

V. B. Borisov, Cytochrome bd: structure and properties, Biochem. Moscow, vol.61, pp.565-5748, 1996.

M. Tsubaki, H. Hori, and T. Mogi, Probing molecular structure of dioxygen reduction site of bacterial quinol oxidases through ligand binding to the redox metal centers, Journal of Inorganic Biochemistry, vol.82, issue.1-4, pp.19-25, 2000.
DOI : 10.1016/S0162-0134(00)00140-9

T. Mogi, M. Tsubaki, H. Hori, H. Miyoshi, H. Nakamura et al., Two terminal quinol oxidase families in Escherichia coli: variations on molecular machinery for dioxygen reduction, J. Biochem. Mol. Biol. Biophys, vol.2, pp.79-110, 1998.

R. K. Poole and G. M. Cook, Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation, Adv. Microb. Physiol, vol.43, pp.165-224, 2000.
DOI : 10.1016/S0065-2911(00)43005-5

J. P. Osborne and R. B. Gennis, Sequence analysis of cytochrome bd oxidase suggests a revised topology for subunit I, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1410, issue.1, pp.32-50, 1999.
DOI : 10.1016/S0005-2728(98)00171-6

J. Zhang, B. Barquera, and R. B. Gennis, Gene fusions with ?-lactamase show that subunit I of the cytochrome bd quinol oxidase from E. coli has nine transmembrane helices with the O 2 reactive site near the periplasmic surface, FEBS Lett, pp.561-58, 2004.

T. J. Dueweke and R. B. Gennis, Epitopes of monoclonal antibodies which inhibit ubiquinol oxidase activity of Escherichia coli cytochrome d complex localize a functional domain, J. Biol. Chem, pp.265-4273, 1990.

R. G. Kranz and R. B. Gennis, Characterization of the cytochrome d terminal oxidase complex of Escherichia coli using polyclonal and monoclonal antibodies, J. Biol. Chem, vol.259, pp.7998-8003, 1984.

R. M. Lorence, K. Carter, R. B. Gennis, K. Matsushita, and H. R. Kaback, Trypsin proteolysis of the cytochrome d complex of Escherichia coli selectively inhibits ubiquinol oxidase activity while not affecting N, N, N?, N?-tetramethyl-p-phenylenediamine oxidase activity, J. Biol. Chem, pp.11-5271, 1988.

T. J. Dueweke and R. B. Gennis, Proteolysis of the cytochrome d complex with trypsin and chymotrypsin localizes a quinol oxidase domain, Biochemistry, vol.30, issue.14, pp.3401-3406, 1991.
DOI : 10.1021/bi00228a007

J. J. Hill, J. O. Alben, and R. B. Gennis, Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli., Proc. Natl Acad. Sci. USA 90, pp.5863-5867, 1993.
DOI : 10.1073/pnas.90.12.5863

M. Tsubaki, H. Hori, T. Mogi, and Y. Anraku, Cyanide-binding Site of bd-type Ubiquinol Oxidase from Escherichia coli, Journal of Biological Chemistry, vol.270, issue.48, pp.28565-28569, 1995.
DOI : 10.1074/jbc.270.48.28565

M. H. Vos, V. B. Borisov, U. Liebl, J. Martin, and A. A. Konstantinov, Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site?, Proc. Natl Acad. Sci. USA 97, pp.1554-1559, 2000.
DOI : 10.1073/pnas.030528197

URL : https://hal.archives-ouvertes.fr/hal-00837031

V. B. Borisov, S. E. Sedelnikova, R. K. Poole, and A. A. Konstantinov, Interaction of Cytochrome bd with Carbon Monoxide at Low and Room Temperatures: EVIDENCE THAT ONLY A SMALL FRACTION OF HEMEb 595 REACTS WITH CO, Journal of Biological Chemistry, vol.276, issue.25, pp.276-22095, 2001.
DOI : 10.1074/jbc.M011542200

F. Rappaport, J. Zhang, M. H. Vos, R. B. Gennis, and V. B. Borisov, Heme???heme and heme???ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1797, issue.9, pp.1657-1664, 2010.
DOI : 10.1016/j.bbabio.2010.05.010

URL : https://hal.archives-ouvertes.fr/hal-00805070

S. Junemann, P. J. Butterworth, and J. M. Wrigglesworth, A suggested mechanism for the catalytic cycle of cytochrome bd terminal oxidase based on kinetic analysis, Biochemistry, vol.34, issue.45, pp.14861-14867, 1995.
DOI : 10.1021/bi00045a029

Y. Matsumoto, E. Muneyuki, D. Fujita, K. Sakamoto, H. Miyoshi et al., Kinetic Mechanism of Quinol Oxidation by Cytochrome bd Studied with Ubiquinone-2 Analogs, Journal of Biochemistry, vol.139, issue.4, pp.779-788, 2006.
DOI : 10.1093/jb/mvj087

K. Yang, V. B. Borisov, A. A. Konstantinov, and R. B. Gennis, does not participate in the catalytic cycle: Direct evidence from rapid kinetics studies, FEBS Letters, vol.46, issue.25-26, pp.3705-3709, 2008.
DOI : 10.1016/j.febslet.2008.09.038

V. B. Borisov, I. A. Smirnova, I. A. Krasnosel-'skaya, and A. A. Konstantinov, Oxygenated cytochrome bd from Escherichia coli can be converted into the oxidized form by lipophilic electron acceptors, Russian), pp.437-4438, 1994.

I. Belevich, V. B. Borisov, A. A. Konstantinov, and M. I. Verkhovsky, : Stability and photolability, FEBS Letters, vol.43, issue.21, pp.4567-4570, 2005.
DOI : 10.1016/j.febslet.2005.07.011

B. C. Hill, J. J. Hill, and R. B. Gennis, The room temperature reaction of carbon monoxide and oxygen with the cytochrome bd quinol oxidase from Escherichia coli, Biochemistry, vol.33, issue.50, pp.15110-15115, 1994.
DOI : 10.1021/bi00254a021

V. Borisov, R. Gennis, and A. A. Konstantinov, Peroxide complex of cytochrome bd: kinetics of generation and stability, Biochem. Mol. Biol. Int, vol.37, pp.975-982, 1995.

V. B. Borisov, R. B. Gennis, and A. A. Konstantinov, Interaction of cytochrome bd from Escherichia coli with hydrogen peroxide, Biochem. Moscow, vol.60, issue.60, pp.231-2398, 1995.

M. G. Mason, P. Nicholls, and C. E. Cooper, The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres, Biochem. J, pp.422-237, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00479128

T. M. Kaysser, J. B. Ghaim, C. Georgiou, and R. B. Gennis, Methionine-393 is an axial ligand of the heme b558 component of the cytochrome bd ubiquinol oxidase from Escherichia coli, Biochemistry, vol.34, issue.41, pp.13491-13501, 1995.
DOI : 10.1021/bi00041a029

M. J. Miller and R. B. Gennis, [9] Purification and reconstitution of the cytochrome d terminal oxidase complex from Escherichia coli, Meth. Enzymol, vol.126, pp.87-94, 1986.
DOI : 10.1016/S0076-6879(86)26011-5

V. B. Borisov, Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: Heme d binds CO with high affinity, Biochemistry (Moscow), vol.73, issue.1, pp.14-228, 2008.
DOI : 10.1134/S0006297908010021

D. A. Bloch, V. B. Borisov, T. Mogi, and M. I. Verkhovsky, Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.10, pp.1246-1253, 2009.
DOI : 10.1016/j.bbabio.2009.05.003