M. W. Adams, F. E. Jenney-jr, M. D. Clay, and M. K. Johnson, Superoxide reductase: fact or fiction?, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.6, pp.647-652, 2002.
DOI : 10.1007/s00775-002-0359-x

J. A. Imlay, What biological purpose is served by superoxide reductase?, JBIC Journal of Biological Inorganic Chemistry, vol.7, issue.6, pp.659-663, 2002.
DOI : 10.1007/s00775-002-0361-3

K. Jr and D. M. , Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin, J. Inorg. Biochem, vol.100, pp.679-693, 2006.

V. Nivière and M. Fontecave, Discovery of superoxide reductase: an historical perspective, Journal of Biological Inorganic Chemistry, vol.9, issue.2, pp.119-123, 2004.
DOI : 10.1007/s00775-003-0519-7

A. F. Pinto, J. V. Rodrigues, and V. M. Teixeira, Reductive elimination of superoxide: Structure and mechanism of superoxide reductases, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.2, pp.285-297, 2010.
DOI : 10.1016/j.bbapap.2009.10.011

J. Jr, F. E. Verhagen, M. F. Cui, X. Adams, and M. W. , Anaerobic microbes: oxygen detoxification without superoxide dismutase, Science, vol.286, pp.306-309, 1999.

S. I. Liochev and I. Fridovich, A Mechanism for Complementation of the sodA sodBDefect in Escherichia coli by Overproduction of therbo Gene Product (Desulfoferrodoxin) fromDesulfoarculus baarsii, Journal of Biological Chemistry, vol.272, issue.41, pp.25573-25575, 1997.
DOI : 10.1074/jbc.272.41.25573

L. Chen, P. Sharma, J. Le-gall, A. M. Mariano, M. Teixeira et al., A Blue Non-Heme Iron Protein from Desulfovibrio gigas, European Journal of Biochemistry, vol.172, issue.2, pp.613-618, 1994.
DOI : 10.1016/0076-6879(63)06257-1

I. Moura, P. Tavares, J. J. Moura, N. Ravi, B. H. Huynh et al., Purification and characterization of desulfoferrodoxin: a novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center, J. Biol. Chem, vol.265, pp.21596-21602, 1990.

V. Adam, A. Royant, V. Nivière, F. P. Molina-heredia, and D. Bourgeois, Structure of Superoxide Reductase Bound to Ferrocyanide and Active Site Expansion upon X-Ray-Induced Photo-Reduction, Structure, vol.12, issue.9, pp.1729-1740, 2004.
DOI : 10.1016/j.str.2004.07.013

URL : https://hal.archives-ouvertes.fr/hal-01075786

A. V. Coelho, P. Matias, V. Fulop, A. Thompson, A. Gonzalez et al., Desulfoferrodoxin structure determined by MAD phasing and refinement to 1.9-?? resolution reveals a unique combination of a tetrahedral FeS 4 centre with a square pyramidal FeSN 4 centre, Journal of Biological Inorganic Chemistry, vol.2, issue.6, pp.680-689, 1997.
DOI : 10.1007/s007750050184

G. Katona, P. Carpentier, V. Nivière, P. Amara, V. Adam et al., Raman-Assisted Crystallography Reveals End-On Peroxide Intermediates in a Nonheme Iron Enzyme, Science, vol.316, issue.5823, pp.449-453, 2007.
DOI : 10.1126/science.1138885

URL : https://hal.archives-ouvertes.fr/hal-01075775

T. Santos-silva, J. Trincao, A. L. Carvalho, C. Bonifacio, F. Auchere et al., The first crystal structure of class III superoxide reductase from Treponema pallidum, JBIC Journal of Biological Inorganic Chemistry, vol.1, issue.Pt A, pp.548-558, 2006.
DOI : 10.1007/s00775-006-0104-y

J. P. Emerson, E. D. Coulter, R. S. Phillips, and D. M. Kurtz-jr, Kinetics of the Superoxide Reductase Catalytic Cycle, Journal of Biological Chemistry, vol.278, issue.41, pp.39662-39668, 2003.
DOI : 10.1074/jbc.M306488200

J. V. Rodrigues, I. A. Abreu, L. M. Saraiva, and M. Teixeira, Rubredoxin acts as an electron donor for neelaredoxin in Archaeoglobus fulgidus, Biochemical and Biophysical Research Communications, vol.329, issue.4, pp.1300-1305, 2005.
DOI : 10.1016/j.bbrc.2005.02.114

J. V. Rodrigues, L. M. Saraiva, I. A. Abreu, M. Teixeira, and D. E. Cabelli, Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin, JBIC Journal of Biological Inorganic Chemistry, vol.124, issue.2, pp.248-256, 2007.
DOI : 10.1007/s00775-006-0182-x

M. J. Pianzzola, M. Soubes, and D. Touati, Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli., Journal of Bacteriology, vol.178, issue.23, pp.6736-6742, 1996.
DOI : 10.1128/jb.178.23.6736-6742.1996

I. A. Abreu, L. M. Saraiva, J. Carita, H. Huber, K. O. Stetter et al., Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by Neelaredoxin, Molecular Microbiology, vol.22, issue.2, pp.322-334, 2000.
DOI : 10.1021/bi992428k

I. A. Abreu, L. M. Saraiva, C. M. Soares, M. Teixeira, and D. E. Cabelli, The Mechanism of Superoxide Scavenging byArchaeoglobus fulgidus Neelaredoxin, Journal of Biological Chemistry, vol.276, issue.42, pp.38995-39001, 2001.
DOI : 10.1074/jbc.M103232200

F. Bonnot, C. Houee-levin, V. Favaudon, and V. Nivière, Photochemical processes observed during the reaction of superoxide reductase from Desulfoarculus baarsii with superoxide, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.4, pp.762-767, 2010.
DOI : 10.1016/j.bbapap.2009.11.019

URL : https://hal.archives-ouvertes.fr/hal-01075296

E. D. Coulter, J. P. Emerson, D. M. Kurtz-jr, and D. Cabelli, :?? A Pulse Radiolysis Study, Journal of the American Chemical Society, vol.122, issue.46, pp.11555-11556, 2000.
DOI : 10.1021/ja005583r

J. V. Rodrigues, B. L. Victor, H. Huber, L. M. Saraiva, C. M. Soares et al., Superoxide reduction by Nanoarchaeum equitans neelaredoxin, an enzyme lacking the highly conserved glutamate iron ligand, JBIC Journal of Biological Inorganic Chemistry, vol.4, issue.2, pp.219-228, 2008.
DOI : 10.1007/s00775-007-0313-z

C. Lucchetti-miganeh, D. Goudenege, D. Thybert, and G. Salbert, Barloy-Hubler, F. SORGOdb: superoxide reductase gene ontology curated database, BMC Microbiol, vol.11, issue.105, 2011.

R. D. Adam, Biology of Giardia lamblia, Clinical Microbiology Reviews, vol.14, issue.3, pp.447-475, 2001.
DOI : 10.1128/CMR.14.3.447-475.2001

J. Ankarklev, J. Jerlstrom-hultqvist, E. Ringqvist, K. Troell, and S. G. Svärd, Behind the smile: cell biology and disease mechanisms of Giardia species, Nature Reviews Microbiology, vol.33, pp.413-422, 2010.
DOI : 10.1038/nrmicro2317

O. Franzen, J. Jerlstrom-hultqvist, E. Castro, E. Sherwood, J. Ankarklev et al., Draft Genome Sequencing of Giardia intestinalis Assemblage B Isolate GS: Is Human Giardiasis Caused by Two Different Species?, PLoS Pathogens, vol.52, issue.1, 2009.
DOI : 10.1371/journal.ppat.1000560.s012

H. G. Morrison, A. G. Mcarthur, F. D. Gillin, S. B. Aley, R. D. Adam et al., Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia, Genomic minimalism in the early diverging intestinal parasite Giardia lamblia, pp.1921-1926, 2007.
DOI : 10.1126/science.1143837

P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner et al., Measurement of protein using bicinchoninic acid, Analytical Biochemistry, vol.150, issue.1, pp.76-85, 1985.
DOI : 10.1016/0003-2697(85)90442-7

L. L. Stookey, Ferrozine---a new spectrophotometric reagent for iron, Analytical Chemistry, vol.42, issue.7, pp.779-781, 1970.
DOI : 10.1021/ac60289a016

E. R. Henry and J. Hofrichter, [8] Singular value decomposition: Application to analysis of experimental data, Methods Enzymol, vol.210, pp.129-192, 1992.
DOI : 10.1016/0076-6879(92)10010-B

J. J. Goto, E. B. Gralla, J. S. Valentine, and D. E. Cabelli, Reactions of Hydrogen Peroxide with Familial Amyotrophic Lateral Sclerosis Mutant Human Copper-Zinc Superoxide Dismutases Studied by Pulse Radiolysis, Journal of Biological Chemistry, vol.273, issue.46, pp.30104-30109, 1998.
DOI : 10.1074/jbc.273.46.30104

D. B. Keister, Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.77, issue.4, pp.487-488, 1983.
DOI : 10.1016/0035-9203(83)90120-7

C. Mathe, V. Nivière, and T. A. Mattioli, Is Associated with pH Dependent Spectral Changes, Journal of the American Chemical Society, vol.127, issue.47, pp.16436-16441, 2005.
DOI : 10.1021/ja053808y

URL : https://hal.archives-ouvertes.fr/hal-01075779

S. Todorovic, J. V. Rodrigues, A. F. Pinto, C. Thomsen, P. Hildebrandt et al., Resonance Raman study of the superoxide reductase from Archaeoglobus fulgidus, E12 mutants and a ???natural variant???, Physical Chemistry Chemical Physics, vol.121, issue.11, pp.1809-1815, 2009.
DOI : 10.1039/b815489a

H. L. Lumppio, N. V. Shenvi, A. O. Summers, G. Voordouw, and D. M. Kurtz-jr, Rubrerythrin and Rubredoxin Oxidoreductase in Desulfovibrio vulgaris: a Novel Oxidative Stress Protection System, Journal of Bacteriology, vol.183, issue.1, pp.101-108, 2001.
DOI : 10.1128/JB.183.1.101-108.2001

C. V. Romão, M. Y. Liu, J. Le-gall, C. M. Gomes, V. Braga et al., The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774, European Journal of Biochemistry, vol.265, issue.2, pp.438-443, 1999.
DOI : 10.1126/science.281.5375.375

G. Silva, S. Oliveira, C. M. Gomes, I. Pacheco, M. Y. Liu et al., neelaredoxin, European Journal of Biochemistry, vol.388, issue.1-2, pp.235-243, 1999.
DOI : 10.1046/j.1432-1327.1999.00025.x

S. M. Townson, J. A. Upcroft, and P. Upcroft, Characterisation and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis, Molecular and Biochemical Parasitology, vol.79, issue.2, pp.183-193, 1996.
DOI : 10.1016/0166-6851(96)02661-8

L. Li and C. C. Wang, A likely molecular basis of the susceptibility of Giardia lambliaTowards oxygen, Molecular Microbiology, vol.66, issue.1, pp.202-211, 2006.
DOI : 10.1016/S0968-0004(02)00003-8

D. M. Brown, J. A. Upcroft, and P. Upcroft, Free radical detoxification in Giardia duodenalis, Molecular and Biochemical Parasitology, vol.72, issue.1-2, pp.47-56, 1995.
DOI : 10.1016/0166-6851(95)00065-9

W. G. Sheridan, R. H. Lowndes, and H. L. Young, Intraoperative tissue oximetry in the human gastrointestinal tract, The American Journal of Surgery, vol.159, issue.3, pp.314-319, 1990.
DOI : 10.1016/S0002-9610(05)81226-7

D. M. Brown, J. A. Upcroft, and P. Upcroft, A H2O-Producing NADH Oxidase from the Protozoan Parasite Giardia Duodenalis, European Journal of Biochemistry, vol.187, issue.1, pp.155-161, 1996.
DOI : 10.1016/0169-4758(93)90144-5

D. Matteo, A. Scandurra, F. M. Testa, F. Forte, E. Sarti et al., The O2-scavenging Flavodiiron Protein in the Human Parasite Giardia intestinalis, Journal of Biological Chemistry, vol.283, issue.7, pp.4061-4068, 2008.
DOI : 10.1074/jbc.M705605200

D. Mastronicola, A. Giuffrè, F. Testa, A. Mura, E. Forte et al., Giardia intestinalis escapes oxidative stress by colonizing the small intestine: A molecular hypothesis, IUBMB Life, vol.36, issue.Pt 12, pp.21-25, 2011.
DOI : 10.1002/iub.409

URL : https://hal.archives-ouvertes.fr/pasteur-00976014

J. B. Vicente, F. Testa, D. Mastronicola, E. Forte, P. Sarti et al., Redox properties of the oxygen-detoxifying flavodiiron protein from the human parasite Giardia intestinalis, Archives of Biochemistry and Biophysics, vol.488, issue.1, pp.9-13, 2009.
DOI : 10.1016/j.abb.2009.06.011

D. Mastronicola, F. Testa, E. Forte, E. Bordi, L. P. Pucillo et al., Flavohemoglobin and nitric oxide detoxification in the human protozoan parasite Giardia intestinalis, Biochemical and Biophysical Research Communications, vol.399, issue.4, pp.654-658, 2010.
DOI : 10.1016/j.bbrc.2010.07.137

S. Rafferty, B. R. Luu, and J. Yee, Giardia lamblia encodes a functional flavohemoglobin, Biochemical and Biophysical Research Communications, vol.399, issue.3, pp.347-351, 2010.
DOI : 10.1016/j.bbrc.2010.07.073

J. O. Andersson, A. M. Sjogren, L. A. Davis, T. M. Embley, and A. J. Roger, Phylogenetic Analyses of Diplomonad Genes Reveal Frequent Lateral Gene Transfers Affecting Eukaryotes, Current Biology, vol.13, issue.2, pp.94-104, 2003.
DOI : 10.1016/S0960-9822(03)00003-4

J. E. Nixon, A. Wang, J. Field, H. G. Morrison, A. G. Mcarthur et al., Evidence for Lateral Transfer of Genes Encoding Ferredoxins, Nitroreductases, NADH Oxidase, and Alcohol Dehydrogenase 3 from Anaerobic Prokaryotes to Giardialamblia and Entamoebahistolytica, Eukaryotic Cell, vol.1, issue.2, pp.181-190, 2002.
DOI : 10.1128/EC.1.2.181-190.2002

P. D. Fernandes and J. Assreuy, Role of nitric oxide and superoxide in Giardia lamblia killing, Brazilian Journal of Medical and Biological Research, vol.30, issue.1, pp.93-99, 1997.
DOI : 10.1590/S0100-879X1997000100015

D. Lloyd, J. C. Harris, S. Maroulis, G. A. Biagini, R. B. Wadley et al., The microaerophilic flagellate Giardia intestinalis: oxygen and its reaction products collapse membrane potential and cause cytotoxicity, Microbiology, vol.146, issue.12, pp.3109-3118, 2000.
DOI : 10.1099/00221287-146-12-3109

E. E. Kelley, N. K. Khoo, N. J. Hundley, U. Z. Malik, B. A. Freeman et al., Hydrogen peroxide is the major oxidant product of xanthine oxidase, Free Radical Biology and Medicine, vol.48, issue.4, pp.493-498, 2010.
DOI : 10.1016/j.freeradbiomed.2009.11.012

C. Mathe, C. O. Weill, T. A. Mattioli, C. Berthomieu, C. Houee-levin et al., Assessing the Role of the Active-site Cysteine Ligand in the Superoxide Reductase from Desulfoarculus baarsii, Journal of Biological Chemistry, vol.282, issue.30, pp.22207-22216, 2007.
DOI : 10.1074/jbc.M700279200

URL : https://hal.archives-ouvertes.fr/hal-00259034

D. I. Edwards, Nitroimidazole drugs-action and resistance mechanisms I. Mechanism of action, Journal of Antimicrobial Chemotherapy, vol.31, issue.1, pp.9-20, 1993.
DOI : 10.1093/jac/31.1.9

URL : http://jac.oxfordjournals.org/cgi/content/short/31/1/9