C. A. Athale, A. Dinarina, M. Mora-coral, C. Pugieux, F. Nedelec et al., Regulation of Microtubule Dynamics by Reaction Cascades Around Chromosomes, Science, vol.322, issue.5905, pp.1243-1247, 2008.
DOI : 10.1126/science.1161820

R. Basto, J. Lau, T. Vinogradova, A. Gardiol, C. G. Woods et al., Flies without Centrioles, Cell, vol.125, issue.7, pp.1375-1386, 2006.
DOI : 10.1016/j.cell.2006.05.025

M. Bettencourt-dias and D. M. Glover, Centrosome biogenesis and function: centrosomics brings new understanding, Nature Reviews Molecular Cell Biology, vol.23, issue.6, pp.451-463, 2007.
DOI : 10.1038/nrm2180

A. W. Bird and A. A. Hyman, Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A, The Journal of Cell Biology, vol.182, issue.2, pp.289-300, 2008.
DOI : 10.1038/2417

F. R. Bischoff, G. Maier, G. Tilz, and H. Ponstingl, A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation., Proc. Natl. Acad. Sci USA, pp.8617-8621, 1990.
DOI : 10.1073/pnas.87.21.8617

S. Bonaccorsi, M. G. Giansanti, and M. Gatti, Spindle assembly in Drosophila neuroblasts and ganglion mother cells, Nature Cell Biology, vol.2, issue.1, pp.54-56, 2000.
DOI : 10.1038/71378

S. K. Bowman, R. A. Neumüller, M. Novatchkova, Q. Du, and J. A. Knoblich, The Drosophila NuMA Homolog Mud Regulates Spindle Orientation in Asymmetric Cell Division, Developmental Cell, vol.10, issue.6, pp.731-742, 2006.
DOI : 10.1016/j.devcel.2006.05.005

E. Bucciarelli, C. Pellacani, V. Naim, A. Palena, M. Gatti et al., Drosophila Dgt6 Interacts with Ndc80, Msps/XMAP215, and ??-Tubulin to Promote Kinetochore-Driven MT Formation, Current Biology, vol.19, issue.21, pp.1839-1845, 2009.
DOI : 10.1016/j.cub.2009.09.043

R. E. Carazo-salas and E. Karsenti, Long-Range Communication between Chromatin and Microtubules in Xenopus Egg Extracts, Current Biology, vol.13, issue.19, pp.1728-1733, 2003.
DOI : 10.1016/j.cub.2003.09.006

C. M. Casanova, S. Rybina, H. Yokoyama, E. Karsenti, and I. W. Mattaj, Hepatoma Up-Regulated Protein Is Required for Chromatin-induced Microtubule Assembly Independently of TPX2, Molecular Biology of the Cell, vol.19, issue.11, pp.4900-4908, 2008.
DOI : 10.1091/mbc.E08-06-0624

J. E. Laycock, M. S. Savoian, and D. M. Glover, Antagonistic activities of Klp10A and Orbit regulate spindle length, bipolarity and function in vivo, Journal of Cell Science, vol.119, issue.11, pp.2354-2361, 2006.
DOI : 10.1242/jcs.02957

C. L. Lemos, P. Sampaio, H. Maiato, M. Costa, L. V. Omel-'yanchuk et al., Mast, a conserved microtubule-associated protein required for bipolar mitotic spindle organization, The EMBO Journal, vol.11, issue.14, pp.3668-3682, 2000.
DOI : 10.1093/emboj/19.14.3668

K. Li and T. C. Kaufman, The Homeotic Target Gene centrosomin Encodes an Essential Centrosomal Component, Cell, vol.85, issue.4, pp.585-596, 1996.
DOI : 10.1016/S0092-8674(00)81258-1

J. Lüders and T. Stearns, Microtubule-organizing centres: a re-evaluation, Nature Reviews Molecular Cell Biology, vol.24, issue.2, pp.161-167, 2007.
DOI : 10.1038/nrm2100

J. Lüders, U. K. Patel, and T. Stearns, GCP-WD is a ??-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation, Nature Cell Biology, vol.115, issue.2, pp.137-147, 2006.
DOI : 10.1093/nar/24.4.596

N. M. Mahoney, G. Goshima, A. D. Douglass, and R. D. Vale, Making Microtubules and Mitotic Spindles in Cells without Functional Centrosomes, Current Biology, vol.16, issue.6, pp.564-569, 2006.
DOI : 10.1016/j.cub.2006.01.053

H. Maiato, P. Sampaio, C. L. Lemos, J. Findlay, M. Carmena et al., MAST/Orbit has a role in microtubule???kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity, The Journal of Cell Biology, vol.89, issue.5, pp.749-760, 2002.
DOI : 10.1038/35019518

H. Maiato, J. Deluca, E. D. Salmon, and W. C. Earnshaw, The dynamic kinetochore-microtubule interface, Journal of Cell Science, vol.117, issue.23, pp.5461-5477, 2004.
DOI : 10.1242/jcs.01536

H. Maiato, C. L. Rieder, and A. Khodjakov, Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis, The Journal of Cell Biology, vol.94, issue.5, pp.831-840, 2004.
DOI : 10.1016/S1360-1385(00)01789-1

H. Maiato, A. Khodjakov, and C. L. Rieder, Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres, Nature Cell Biology, vol.5, issue.1, pp.42-47, 2005.
DOI : 10.1083/jcb.135.2.315

A. D. Mcainsh, P. Meraldi, V. M. Draviam, A. Toso, and P. K. Sorger, The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation, The EMBO Journal, vol.2, issue.17, pp.4033-4049, 2006.
DOI : 10.1083/jcb.152.2.349

T. L. Megraw, L. R. Kao, and T. C. Kaufman, Zygotic development without functional mitotic centrosomes, Current Biology, vol.11, issue.2, pp.116-120, 2001.
DOI : 10.1016/S0960-9822(01)00017-3

G. L. Miklos, M. Yamamoto, R. G. Burns, and R. Maleszka, An essential cell division gene of Drosophila, absent from Saccharomyces, encodes an unusual protein with tubulin-like and myosin-like peptide motifs, Proc. Natl. Acad. Sci. USA 94, pp.5189-5194, 1998.
DOI : 10.1073/pnas.94.10.5189

P. Morciano, C. Carrisi, L. Capobianco, L. Mannini, G. Burgio et al., A conserved role for the mitochondrial citrate transporter Sea/SLC25A1 in the maintenance of chromosome integrity, Human Molecular Genetics, vol.18, issue.21, pp.4180-4188, 2009.
DOI : 10.1093/hmg/ddp370

S. Moutinho-pereira, A. Debec, and H. Maiato, Microtubule Cytoskeleton Remodeling by Acentriolar Microtubule-organizing Centers at the Entry and Exit from Mitosis in Drosophila Somatic Cells, Molecular Biology of the Cell, vol.20, issue.11, pp.2796-2808, 2009.
DOI : 10.1091/mbc.E09-01-0011

URL : https://hal.archives-ouvertes.fr/hal-00394009

A. Musacchio and E. D. Salmon, The spindle-assembly checkpoint in space and time, Nature Reviews Molecular Cell Biology, vol.6, issue.5, pp.379-393, 2007.
DOI : 10.1038/nrm2163

O. Connell, C. B. Khodjakov, and A. L. , Cooperative mechanisms of mitotic spindle formation, Journal of Cell Science, vol.120, issue.10, pp.1717-1722, 2007.
DOI : 10.1242/jcs.03442

O. Connell, C. B. Loncarek, J. Kaláb, P. Khodjakov, and A. , Relative contributions of chromatin and kinetochores to mitotic spindle assembly, The Journal of Cell Biology, vol.10, issue.1, pp.43-51, 2009.
DOI : 10.1016/j.cub.2005.03.019

N. Ozlü, M. Srayko, K. Kinoshita, B. Habermann, E. T. O-'toole et al., An Essential Function of the C. elegans Ortholog of TPX2 Is to Localize Activated Aurora A Kinase to Mitotic Spindles, Developmental Cell, vol.9, issue.2, pp.237-248, 2005.
DOI : 10.1016/j.devcel.2005.07.002

M. J. Palacios, H. C. Joshi, C. Simerly, and G. Schatten, Gamma-tubulin reorganization during mouse fertilization and early development, J. Cell Sci, vol.104, pp.383-389, 1993.

M. R. Przewloka, W. Zhang, P. Costa, V. Archambault, P. P. D-'avino et al., Molecular Analysis of Core Kinetochore Composition and Assembly in Drosophila melanogaster, PLoS ONE, vol.6, issue.5, p.478, 2007.
DOI : 10.1371/journal.pone.0000478.s002

J. W. Raff, D. R. Kellogg, and B. M. Alberts, Drosophila gamma-tubulin is part of a complex containing two previously identified centrosomal MAPs, The Journal of Cell Biology, vol.121, issue.4, pp.823-835, 1993.
DOI : 10.1083/jcb.121.4.823

E. Rebollo, S. Llamazares, J. Reina, and C. Gonzalez, Contribution of Noncentrosomal Microtubules to Spindle Assembly in Drosophila Spermatocytes, PLoS Biology, vol.65, issue.1, pp.10-1371, 2004.
DOI : 10.1371/journal.pbio.0020008.s008

E. Rebollo, P. Sampaio, J. Januschke, S. Llamazares, H. Varmark et al., Functionally Unequal Centrosomes Drive Spindle Orientation in Asymmetrically Dividing Drosophila Neural Stem Cells, Developmental Cell, vol.12, issue.3, pp.467-474, 2007.
DOI : 10.1016/j.devcel.2007.01.021

N. M. Rusan and M. Peifer, A role for a novel centrosome cycle in asymmetric cell division, The Journal of Cell Biology, vol.115, issue.1, pp.13-20, 2007.
DOI : 10.1016/j.neuron.2006.06.016

S. C. Sampath, R. Ohi, O. Leismann, A. Salic, A. Pozniakovski et al., The Chromosomal Passenger Complex Is Required for Chromatin-Induced Microtubule Stabilization and Spindle Assembly, Cell, vol.118, issue.2, pp.187-202, 2004.
DOI : 10.1016/j.cell.2004.06.026

R. B. Schittenhelm, S. Heeger, F. Althoff, A. Walter, S. Heidmann et al., Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes, Chromosoma, vol.98, issue.4, pp.385-402, 2007.
DOI : 10.1007/s00412-007-0103-y

M. Schuh and J. Ellenberg, Self-Organization of MTOCs Replaces Centrosome Function during Acentrosomal Spindle Assembly in Live Mouse Oocytes, Cell, vol.130, issue.3, pp.484-498, 2007.
DOI : 10.1016/j.cell.2007.06.025

K. H. Siller, C. Cabernard, and C. Q. Doe, The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts, Nature Cell Biology, vol.162, issue.6, pp.594-600, 2006.
DOI : 10.1038/ncb1412

M. P. Somma, B. Fasulo, G. Cenci, E. Cundari, and M. Gatti, Molecular Dissection of Cytokinesis by RNA Interference in Drosophila Cultured Cells, Molecular Biology of the Cell, vol.13, issue.7, pp.2448-2460, 2002.
DOI : 10.1091/mbc.01-12-0589

M. P. Somma, F. Ceprani, E. Bucciarelli, V. Naim, V. De-arcangelis et al., Identification of Drosophila Mitotic Genes by Combining Co-Expression Analysis and RNA Interference, PLoS Genetics, vol.16, issue.1, 2008.
DOI : 10.1371/journal.pgen.1000126.s024

L. Torosantucci, M. De-luca, G. Guarguaglini, P. Lavia, and F. Degrassi, Localized RanGTP Accumulation Promotes Microtubule Nucleation at Kinetochores in Somatic Mammalian Cells, Molecular Biology of the Cell, vol.19, issue.5, pp.1873-1882, 2008.
DOI : 10.1091/mbc.E07-10-1050

A. Toso, J. R. Winter, A. J. Garrod, A. C. Amaro, P. Meraldi et al., Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly, The Journal of Cell Biology, vol.184, issue.3, pp.365-372, 2009.
DOI : 10.1091/mbc.7.10.1547

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646558

U. S. Tulu, C. Fagerstrom, N. P. Ferenz, and P. Wadsworth, Molecular Requirements for Kinetochore-Associated Microtubule Formation in Mammalian Cells, Current Biology, vol.16, issue.5, pp.536-541, 2006.
DOI : 10.1016/j.cub.2006.01.060

R. Uehara, R. S. Nozawa, A. Tomioka, S. Petry, R. D. Vale et al., The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells, Proc. Natl. Acad. Sci. USA, pp.6998-7003, 2009.
DOI : 10.1073/pnas.0901587106

A. Wainman, D. W. Buster, T. Duncan, J. Metz, A. Ma et al., A new Augmin subunit, Msd1, demonstrates the importance of mitotic spindle-templated microtubule nucleation in the absence of functioning centrosomes, Genes & Development, vol.23, issue.16, pp.1876-1881, 2009.
DOI : 10.1101/gad.532209

J. G. Wakefield, S. Bonaccorsi, and M. Gatti, Protein Asp Is Involved in Microtubule Organization during Spindle Formation and Cytokinesis, The Journal of Cell Biology, vol.108, issue.4, pp.637-648, 2001.
DOI : 10.1016/S0955-0674(99)80015-5

C. E. Walczak and R. Heald, Mechanisms of Mitotic Spindle Assembly and Function, Int. Rev. Cytol, vol.265, pp.111-158, 2008.
DOI : 10.1016/S0074-7696(07)65003-7

B. C. Williams, T. L. Karr, J. M. Montgomery, and M. L. Goldberg, The Drosophila l(1)zw10 gene product, required for accurate mitotic chromosome segregation, is redistributed at anaphase onset, The Journal of Cell Biology, vol.118, issue.4, pp.759-773, 1992.
DOI : 10.1083/jcb.118.4.759

P. L. Witt, H. Ris, and G. G. Borisy, Origin of kinetochore microtubules in Chinese hamster ovary cells, Chromosoma, vol.24, issue.3, pp.483-505, 1980.
DOI : 10.1007/BF00368158

H. Zhu, J. A. Coppinger, C. Y. Jang, J. R. Yates, and G. Fang, FAM29A promotes microtubule amplification via recruitment of the NEDD1?????-tubulin complex to the mitotic spindle, The Journal of Cell Biology, vol.422, issue.5, pp.835-848, 2008.
DOI : 10.1038/35050669