C. Rozman and E. Montserrat, Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.333, issue.16, pp.1052-1057, 1995.
DOI : 10.1056/NEJM199510193331606

R. Damle, T. Wasil, and F. Fais, Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia, Blood, vol.94, pp.1840-1847, 1999.

A. Guarini, G. Gaidano, and F. Mauro, Chronic lymphocytic leukemia patients with highly stable and indolent disease show distinctive phenotypic and genotypic features, Blood, vol.102, issue.3, pp.1035-1041, 2003.
DOI : 10.1182/blood-2002-12-3639

T. Hamblin, Z. Davis, A. Gardiner, D. Oscier, and F. Stevenson, Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia, Blood, vol.94, pp.1848-1854, 1999.

M. Crespo, F. Bosch, and N. Villamor, ZAP-70 Expression as a Surrogate for Immunoglobulin-Variable-Region Mutations in Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.348, issue.18, pp.1764-1775, 2003.
DOI : 10.1056/NEJMoa023143

M. Gentile, F. Mauro, and E. Calabrese, The prognostic value of CD38 expression in chronic lymphocytic leukaemia patients studied prospectively at diagnosis: a single institute experience, British Journal of Haematology, vol.5, issue.4, pp.549-557, 2005.
DOI : 10.1182/blood-2002-10-3306

L. Rassenti, L. Huynh, and T. Toy, ZAP-70 Compared with Immunoglobulin Heavy-Chain Gene Mutation Status as a Predictor of Disease Progression in Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.351, issue.9, pp.893-901, 2004.
DOI : 10.1056/NEJMoa040857

H. Dohner, S. Stilgenbauer, and A. Benner, Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia, New England Journal of Medicine, vol.343, issue.26, pp.1910-1916, 2000.
DOI : 10.1056/NEJM200012283432602

F. Caligaris-cappio and T. Hamblin, B-Cell Chronic Lymphocytic Leukemia: A Bird of a Different Feather, Journal of Clinical Oncology, vol.17, issue.1, pp.399-408, 1999.
DOI : 10.1200/JCO.1999.17.1.399

S. Fulda and K. Debatin, Modulation of apoptosis signaling for cancer therapy, Archivum Immunologiae et Therapiae Experimentalis, vol.54, issue.3, pp.173-175, 2006.
DOI : 10.1007/s00005-006-0019-x

T. Halazonetis, V. Gorgoulis, and J. Bartek, An Oncogene-Induced DNA Damage Model for Cancer Development, Science, vol.319, issue.5868, pp.1352-1355, 2008.
DOI : 10.1126/science.1140735

T. Tan and E. White, Therapeutic Targeting of Death Pathways in Cancer: Mechanisms for Activating Cell Death in Cancer Cells, Adv Exp Med Biol, vol.615, pp.81-104, 2008.
DOI : 10.1007/978-1-4020-6554-5_5

B. Austen, J. Powell, and A. Alvi, Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL, Blood, vol.106, issue.9, pp.3175-3182, 2005.
DOI : 10.1182/blood-2004-11-4516

A. Rosenwald, E. Chuang, and R. Davis, Fludarabine treatment of patients with chronic lymphocytic leukemia induces a p53-dependent gene expression response, Blood, vol.104, issue.5, pp.1428-1434, 2004.
DOI : 10.1182/blood-2003-09-3236

T. Zenz, A. Krober, and K. Scherer, Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up, Blood, vol.112, issue.8, pp.3322-3329, 2008.
DOI : 10.1182/blood-2008-04-154070

H. Dohner, K. Fischer, and M. Bentz, p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias, Blood, vol.85, pp.1580-1589, 1995.

D. Oscier, A. Gardiner, and S. Mould, Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors, Blood, vol.100, pp.1177-1184, 2002.

T. Zenz, S. Habe, and T. Denzel, Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial, Blood, vol.114, issue.13, pp.2589-2597, 2009.
DOI : 10.1182/blood-2009-05-224071

A. Pettitt, P. Sherrington, G. Stewart, J. Cawley, A. Taylor et al., p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation, Blood, vol.98, issue.3, pp.814-822, 2001.
DOI : 10.1182/blood.V98.3.814

V. Schreiber, F. Dantzer, J. Ame, G. De-murcia, and . Poly, Poly(ADP-ribose): novel functions for an old molecule, Nature Reviews Molecular Cell Biology, vol.116, issue.7, pp.517-528, 2006.
DOI : 10.1038/nrm1963

URL : https://hal.archives-ouvertes.fr/hal-00129983

P. Hassa and M. Hottiger, The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases, Frontiers in Bioscience, vol.13, issue.13, pp.3046-3082, 2008.
DOI : 10.2741/2909

D. Amours, D. Desnoyers, S. , D. Silva, I. Poirier et al., Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions, Biochemical Journal, vol.342, issue.2, pp.249-268, 1999.
DOI : 10.1042/bj3420249

J. Haince, S. Kozlov, and V. Dawson, Ataxia Telangiectasia Mutated (ATM) Signaling Network Is Modulated by a Novel Poly(ADP-ribose)-dependent Pathway in the Early Response to DNA-damaging Agents, Journal of Biological Chemistry, vol.282, issue.22, pp.16441-16453, 2007.
DOI : 10.1074/jbc.M608406200

M. Stilmann, M. Hinz, S. Arslan, A. Zimmer, V. Schreiber et al., A Nuclear Poly(ADP-Ribose)-Dependent Signalosome Confers DNA Damage-Induced I??B Kinase Activation, Molecular Cell, vol.36, issue.3, pp.365-378, 2009.
DOI : 10.1016/j.molcel.2009.09.032

M. Kanai, K. Hanashiro, and S. Kim, Inhibition of Crm1???p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation, Nature Cell Biology, vol.6, issue.10, pp.1175-1183, 2007.
DOI : 10.1016/S0092-8674(03)00433-1

M. Bacalini, D. Lonardo, D. Catizone, and A. , Poly(ADP-ribosyl)ation affects stabilization of Che-1 protein in response to DNA damage, DNA Repair, vol.10, issue.4, pp.380-389, 2011.
DOI : 10.1016/j.dnarep.2011.01.002

URL : https://hal.archives-ouvertes.fr/pasteur-00976870

C. Passananti, A. Floridi, and M. Fanciulli, Che-1/AATF, a multivalent adaptor connecting transcriptional regulation, checkpoint control, and apoptosisThis paper is one of a selection of papers published in this Special Issue, entitled 28th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process., Biochemistry and Cell Biology, vol.85, issue.4, pp.477-483, 2007.
DOI : 10.1139/O07-062

T. Bruno, D. Nicola, F. Iezzi, and S. , Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint, Cancer Cell, vol.10, issue.6, pp.473-486, 2006.
DOI : 10.1016/j.ccr.2006.10.012

D. Nicola, F. Bruno, T. Iezzi, and S. , The Prolyl Isomerase Pin1 Affects Che-1 Stability in Response to Apoptotic DNA Damage, Journal of Biological Chemistry, vol.282, issue.27, pp.19685-19691, 2007.
DOI : 10.1074/jbc.M610282200

A. Rosenwald, A. Alizadeh, and G. Widhopf, Relation of Gene Expression Phenotype to Immunoglobulin Mutation Genotype in B Cell Chronic Lymphocytic Leukemia, The Journal of Experimental Medicine, vol.8, issue.11, pp.1639-1647, 2001.
DOI : 10.1006/geno.1996.0177

U. Klein, Y. Tu, and G. Stolovitzky, Gene Expression Profiling of B Cell Chronic Lymphocytic Leukemia Reveals a Homogeneous Phenotype Related to Memory B Cells, The Journal of Experimental Medicine, vol.94, issue.11, pp.1625-1638, 2001.
DOI : 10.1038/ng0193-88

T. Haferlach, A. Kohlmann, and L. Wieczorek, Clinical Utility of Microarray-Based Gene Expression Profiling in the Diagnosis and Subclassification of Leukemia: Report From the International Microarray Innovations in Leukemia Study Group, Journal of Clinical Oncology, vol.28, issue.15, pp.2529-2537, 2010.
DOI : 10.1200/JCO.2009.23.4732

C. Li and W. Wong, Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection, Proceedings of the National Academy of Sciences, vol.98, issue.1, pp.31-36, 2001.
DOI : 10.1073/pnas.98.1.31

P. Ouillette, S. Fossum, and B. Parkin, Aggressive Chronic Lymphocytic Leukemia with Elevated Genomic Complexity Is Associated with Multiple Gene Defects in the Response to DNA Double-Strand Breaks, Clinical Cancer Research, vol.16, issue.3, pp.835-847, 2010.
DOI : 10.1158/1078-0432.CCR-09-2534

M. Rudd, G. Sellick, E. Webb, D. Catovsky, and R. Houlston, Variants in the ATM-BRCA2-CHEK2 axis predispose to chronic lymphocytic leukemia, Blood, vol.108, issue.2, pp.638-644, 2006.
DOI : 10.1182/blood-2005-12-5022

D. Hui, N. Satkunam, A. Kaptan, M. Reiman, T. Lai et al., Pathway-specific apoptotic gene expression profiling in chronic lymphocytic leukemia and follicular lymphoma, Modern Pathology, vol.9, issue.9, pp.1192-1202, 2006.
DOI : 10.1038/modpathol.3800632

W. Tong, U. Cortes, and Z. Wang, Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1552, issue.1, pp.27-37, 2001.
DOI : 10.1016/S0304-419X(01)00035-X

O. Cohausz and F. Althaus, Role of PARP-1 and PARP-2 in the expression of apoptosis-regulating genes in HeLa cells, Cell Biology and Toxicology, vol.296, issue.Pt 2, pp.379-391, 2009.
DOI : 10.1007/s10565-008-9092-8

M. Paddock, B. Buelow, S. Takeda, A. Scharenberg, I. Koo et al., The BRCT domain of PARP-1 is required for immunoglobulin gene conversion Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types, PLoS Biol. Genes Cancer, vol.81, pp.812-821, 2010.

D. Kaul and A. Mehrotra, Functional characterization of AATF transcriptome in human leukemic cells, Molecular and Cellular Biochemistry, vol.20, issue.1, pp.215-220, 2007.
DOI : 10.1007/s11010-006-9317-1

C. Su, Y. Shann, and M. Hsu, p53 Chromatin Epigenetic Domain Organization and p53 Transcription, Molecular and Cellular Biology, vol.29, issue.1, pp.93-103, 2009.
DOI : 10.1128/MCB.00704-08

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612499

T. Bruno, A. Desantis, and G. Bossi, Che-1 Promotes Tumor Cell Survival by Sustaining Mutant p53 Transcription and Inhibiting DNA Damage Response Activation, Cancer Cell, vol.18, issue.2, pp.122-134, 2010.
DOI : 10.1016/j.ccr.2010.05.027

D. Rossi, M. Cerri, and C. Deambrogi, The Prognostic Value of TP53 Mutations in Chronic Lymphocytic Leukemia Is Independent of Del17p13: Implications for Overall Survival and Chemorefractoriness, Clinical Cancer Research, vol.15, issue.3, pp.995-1004, 2009.
DOI : 10.1158/1078-0432.CCR-08-1630

M. Tewari, L. Quan, O. Rourke, and K. , Yama/CPP32??, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell, vol.81, issue.5, pp.801-809, 1995.
DOI : 10.1016/0092-8674(95)90541-3

V. Weston, C. Oldreive, and A. Skowronska, The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo, Blood, vol.116, issue.22, pp.4578-4587, 2010.
DOI : 10.1182/blood-2010-01-265769

A. Holleman, M. Boer, and K. Kazemier, Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia, Blood, vol.106, issue.5, pp.1817-1823, 2005.
DOI : 10.1182/blood-2004-11-4296

W. Tong, M. Hande, P. Lansdorp, and Z. Wang, DNA Strand Break-Sensing Molecule Poly(ADP-Ribose) Polymerase Cooperates with p53 in Telomere Function, Chromosome Stability, and Tumor Suppression, Molecular and Cellular Biology, vol.21, issue.12, pp.4046-4054, 2001.
DOI : 10.1128/MCB.21.12.4046-4054.2001