R. Smith, L. Barile, E. Messina, and E. Marban, Stem cells in the heart: What's the buzz all about????Part 1: Preclinical considerations, Heart Rhythm, vol.5, issue.5, pp.749-57, 2008.
DOI : 10.1016/j.hrthm.2008.02.010

R. Gaetani, L. Barile, E. Forte, I. Chimenti, V. Ionta et al., New Perspectives to Repair a Broken Heart, Cardiovascular & Hematological Agents in Medicinal Chemistry, vol.7, issue.2, pp.91-107, 2009.
DOI : 10.2174/187152509787847128

P. Menasche, Cardiac cell therapy: Lessons from clinical trials, Journal of Molecular and Cellular Cardiology, vol.50, issue.2, pp.258-65, 2011.
DOI : 10.1016/j.yjmcc.2010.06.010

R. Smith, L. Barile, E. Messina, and E. Marban, Stem cells in the heart: What's the buzz all about? Part 2: Arrhythmic risks and clinical studies, Heart Rhythm, vol.5, issue.6, pp.880-887, 2008.
DOI : 10.1016/j.hrthm.2008.02.011

J. Terrovitis, R. Smith, and E. Marban, Assessment and Optimization of Cell Engraftment After Transplantation Into the Heart, Circulation Research, vol.106, issue.3, pp.479-94, 2010.
DOI : 10.1161/CIRCRESAHA.109.208991

E. Forte, I. Chimenti, L. Barile, R. Gaetani, F. Angelini et al., Cardiac Cell Therapy: The Next (Re)Generation, Stem Cell Reviews and Reports, vol.16, issue.Suppl 1, 2011.
DOI : 10.1007/s12015-011-9252-8

URL : https://hal.archives-ouvertes.fr/pasteur-00978435

R. Gaetani, G. Rizzitelli, I. Chimenti, L. Barile, E. Forte et al., Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application, Journal of Cellular and Molecular Medicine, vol.14, pp.1071-1078, 2010.
DOI : 10.1111/j.1582-4934.2010.01078.x

F. Wang and J. Guan, Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy???, Advanced Drug Delivery Reviews, vol.62, issue.7-8, pp.784-97, 2010.
DOI : 10.1016/j.addr.2010.03.001

E. Martinez and T. Kofidis, Myocardial tissue engineering: the quest for the ideal myocardial substitute, Expert Review of Cardiovascular Therapy, vol.7, issue.8, pp.921-929, 2009.
DOI : 10.1586/erc.09.81

O. Schussler, J. Chachques, T. Mesana, E. Suuronen, Y. Lecarpentier et al., 3-Dimensional Structures to Enhance Cell Therapy and Engineer Contractile Tissue, Asian Cardiovascular and Thoracic Annals, vol.173, issue.22, pp.188-98, 2011.
DOI : 10.1038/nbt1109

G. Fomovsky, S. Thomopoulos, and J. Holmes, Contribution of extracellular matrix to the mechanical properties of the heart, Journal of Molecular and Cellular Cardiology, vol.48, issue.3, pp.490-496, 2009.
DOI : 10.1016/j.yjmcc.2009.08.003

S. Bowers, I. Banerjee, and T. Baudino, The extracellular matrix: At the center of it all, Journal of Molecular and Cellular Cardiology, vol.48, issue.3, 2009.
DOI : 10.1016/j.yjmcc.2009.08.024

P. Akhyari, H. Kamiya, A. Haverich, M. Karck, and A. Lichtenberg, Myocardial tissue engineering: the extracellular matrix???, European Journal of Cardio-Thoracic Surgery, vol.34, issue.2, pp.229-270, 2008.
DOI : 10.1016/j.ejcts.2008.03.062

L. Barile, E. Messina, A. Giacomello, and E. Marban, Endogenous Cardiac Stem Cells, Progress in Cardiovascular Diseases, vol.50, issue.1, pp.31-48, 2007.
DOI : 10.1016/j.pcad.2007.03.005

L. Barile, I. Chimenti, R. Gaetani, E. Forte, F. Miraldi et al., Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration, Nature Clinical Practice Cardiovascular Medicine, vol.103, pp.9-14, 2007.
DOI : 10.1038/ncpcardio0738

D. Davis, Y. Zhang, R. Smith, K. Cheng, J. Terrovitis et al., Validation of the Cardiosphere Method to Culture Cardiac Progenitor Cells from Myocardial Tissue, PLoS ONE, vol.104, issue.9, p.7195, 2009.
DOI : 10.1371/journal.pone.0007195.g006

T. Li, K. Cheng, S. Lee, S. Matsushita, D. Davis et al., Cardiospheres Recapitulate a Niche-Like Microenvironment Rich in Stemness and Cell-Matrix Interactions, Rationalizing Their Enhanced Functional Potency for Myocardial Repair, STEM CELLS, vol.27, issue.11, pp.2088-98, 2010.
DOI : 10.1002/stem.532

E. Messina, D. Angelis, L. Frati, G. Morrone, S. Chimenti et al., Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart, Circulation Research, vol.95, issue.9, pp.911-932, 2004.
DOI : 10.1161/01.RES.0000147315.71699.51

R. Smith, L. Barile, H. Cho, M. Leppo, J. Hare et al., Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens, Circulation, vol.115, issue.7, pp.896-908, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.655209

I. Chimenti, R. Gaetani, L. Barile, G. Frati, E. Messina et al., c-kit cardiac progenitor cells: What is their potential?, Proceedings of the National Academy of Sciences, vol.106, issue.28, p.78, 2009.
DOI : 10.1073/pnas.0903261106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710690

P. Johnston, T. Sasano, K. Mills, R. Evers, S. Lee et al., Engraftment, Differentiation, and Functional Benefits of Autologous Cardiosphere-Derived Cells in Porcine Ischemic Cardiomyopathy, Circulation, vol.120, issue.12, pp.1075-83, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.816058

S. Lee, A. White, S. Matsushita, K. Malliaras, C. Steenbergen et al., Intramyocardial Injection of Autologous Cardiospheres or Cardiosphere-Derived Cells Preserves Function and Minimizes Adverse Ventricular Remodeling in Pigs With Heart Failure Post-Myocardial Infarction, Journal of the American College of Cardiology, vol.57, issue.4, pp.455-65, 2011.
DOI : 10.1016/j.jacc.2010.07.049

J. Terrovitis, R. Lautamaki, M. Bonios, J. Fox, J. Engles et al., Noninvasive Quantification and Optimization of Acute Cell Retention by In Vivo Positron Emission Tomography After Intramyocardial Cardiac-Derived Stem Cell Delivery, Journal of the American College of Cardiology, vol.54, issue.17, pp.1619-1645, 2009.
DOI : 10.1016/j.jacc.2009.04.097

K. Malliaras and E. Marban, Cardiac cell therapy: where we've been, where we are, and where we should be headed, British Medical Bulletin, vol.98, issue.1, pp.161-85, 2011.
DOI : 10.1093/bmb/ldr018

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149211

I. Chimenti, R. Smith, T. Li, G. Gerstenblith, E. Messina et al., Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice, Circulation Research, vol.106, issue.5, pp.971-80, 2010.
DOI : 10.1161/CIRCRESAHA.109.210682

M. Stastna, I. Chimenti, E. Marban, V. Eyk, and J. , Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes, PROTEOMICS, vol.1, issue.2, pp.245-53, 2010.
DOI : 10.1002/pmic.200900515

C. Altomare, L. Barile, S. Marangoni, M. Rocchetti, M. Alemanni et al., Caffeine-induced Ca2+ signaling as an index of cardiac progenitor cells differentiation, Basic Research in Cardiology, vol.555, issue.4 Suppl, pp.737-786, 2010.
DOI : 10.1007/s00395-010-0111-6

O. Schussler, C. Coirault, M. Louis-tisserand, W. Al-chare, P. Oliviero et al., Use of arginine???glycine???aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft, Nature Clinical Practice Cardiovascular Medicine, vol.114, issue.3, pp.240-249, 2009.
DOI : 10.1038/ncpcardio1451

A. Barbetta, G. Rizzitelli, R. Bedini, R. Pecci, and M. Dentini, Porous gelatin hydrogels by gas-in-liquid foam templating, Soft Matter, vol.159, issue.8, pp.1785-92, 2010.
DOI : 10.1039/b920049e

A. Elmoutaouakkil, G. Fuchs, P. Bergounhon, R. Péres, and F. Peyrin, Three-dimensional quantitative analysis of polymer foams from synchrotron radiation x-ray microtomography, Journal of Physics D: Applied Physics, vol.36, issue.10A, pp.37-43, 2003.
DOI : 10.1088/0022-3727/36/10A/308

R. Gaetani, M. Ledda, L. Barile, I. Chimenti, D. Carlo et al., Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields, Cardiovascular Research, vol.82, issue.3, pp.411-431, 2009.
DOI : 10.1093/cvr/cvp067

A. Engler, M. Griffin, S. Sen, C. Bonnemann, H. Sweeney et al., Myotubes differentiate optimally on substrates with tissue-like stiffness, The Journal of Cell Biology, vol.20, issue.6, pp.877-87, 2004.
DOI : 10.1152/ajpcell.00269.2001

D. Gray, J. Tien, and C. Chen, Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus, Journal of Biomedical Materials Research, vol.120, issue.3, pp.605-619, 2003.
DOI : 10.1002/jbm.a.10585

C. Lo, H. Wang, M. Dembo, and Y. Wang, Cell Movement Is Guided by the Rigidity of the Substrate, Biophysical Journal, vol.79, issue.1, pp.144-52, 2000.
DOI : 10.1016/S0006-3495(00)76279-5

E. Rexeisen, W. Fan, T. Pangburn, R. Taribagil, F. Bates et al., Selfassembly of fibronectin mimetic peptide-amphiphile nanofibers, Langmuir, vol.26, 2010.

G. Kavanagh and R. Sb, Rheological characterisation of polymer gels, Progress in Polymer Science, vol.23, issue.3, pp.533-62, 1998.
DOI : 10.1016/S0079-6700(97)00047-6

K. Richter, M. Haslbeck, and J. Buchner, The Heat Shock Response: Life on the Verge of Death, Molecular Cell, vol.40, issue.2, pp.253-66, 2010.
DOI : 10.1016/j.molcel.2010.10.006

D. Lanneau, M. Brunet, E. Frisan, E. Solary, M. Fontenay et al., Heat shock proteins: essential proteins for apoptosis regulation, Journal of Cellular and Molecular Medicine, vol.11, issue.3, pp.743-61, 2008.
DOI : 10.1016/j.febslet.2007.04.033

W. Zimmermann and R. Cesnjevar, Cardiac Tissue Engineering: Implications for Pediatric Heart Surgery, Pediatric Cardiology, vol.17, issue.Suppl 1, pp.716-739, 2009.
DOI : 10.1007/s00246-009-9405-6

I. Chimenti, R. Gaetani, L. Barile, E. Forte, V. Ionta et al., Evidence for the Existence of Resident Cardiac Stem Cells, Regenerating the heart, 2011.
DOI : 10.1007/978-1-61779-021-8_9

M. Gordon and R. Hahn, Collagens, Cell and Tissue Research, vol.132, issue.1, pp.247-57, 2010.
DOI : 10.1007/s00441-009-0844-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997103

A. Barbetta, M. Massimi, D. Rosario, B. Nardecchia, S. et al., Emulsion Templated Scaffolds that Include Gelatin and Glycosaminoglycans, Biomacromolecules, vol.9, issue.10, pp.2844-56, 2008.
DOI : 10.1021/bm800599d

L. Dreesmann, M. Ahlers, and B. Schlosshauer, The pro-angiogenic characteristics of a cross-linked gelatin matrix, Biomaterials, vol.28, issue.36, pp.5536-5579, 2007.
DOI : 10.1016/j.biomaterials.2007.08.040

W. Dai, L. Wold, J. Dow, and R. Kloner, Thickening of the Infarcted Wall by Collagen Injection Improves Left Ventricular Function in Rats, Journal of the American College of Cardiology, vol.46, issue.4, pp.714-723, 2005.
DOI : 10.1016/j.jacc.2005.04.056

N. Huang, J. Yu, R. Sievers, S. Li, and R. Lee, Injectable Biopolymers Enhance Angiogenesis after Myocardial Infarction, Tissue Engineering, vol.11, issue.11-12, pp.1860-1866, 2005.
DOI : 10.1089/ten.2005.11.1860

K. Pfannkuche, S. Neuss, F. Pillekamp, L. Frenzel, W. Attia et al., Fibroblasts Facilitate the Engraftment of Embryonic Stem Cell-Derived Cardiomyocytes on Three-Dimensional Collagen Matrices and Aggregation in Hanging Drops, Stem Cells and Development, vol.19, issue.10, pp.1589-99, 2010.
DOI : 10.1089/scd.2009.0255

N. Tulloch, V. Muskheli, M. Razumova, F. Korte, M. Regnier et al., Growth of Engineered Human Myocardium With Mechanical Loading and Vascular Coculture, Circulation Research, vol.109, issue.1, pp.47-59, 2011.
DOI : 10.1161/CIRCRESAHA.110.237206

D. Discher, P. Janmey, and Y. Wang, Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, vol.310, issue.5751, pp.1139-1182, 2005.
DOI : 10.1126/science.1116995

P. Bajaj, X. Tang, T. Saif, and R. Bashir, Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes, Journal of Biomedical Materials Research Part A, vol.99, issue.4, pp.1261-1270, 2010.
DOI : 10.1002/jbm.a.32951

A. Engler, C. Carag-krieger, C. Johnson, M. Raab, H. Tang et al., Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating, Journal of Cell Science, vol.121, issue.22, pp.3794-802, 2008.
DOI : 10.1242/jcs.029678

H. Jawad, N. Ali, A. Lyon, Q. Chen, S. Harding et al., Myocardial tissue engineering: a review, Journal of Tissue Engineering and Regenerative Medicine, vol.11, issue.5, pp.327-369, 2007.
DOI : 10.1002/term.46

D. Nelson, Z. Ma, K. Fujimoto, R. Hashizume, and W. Wagner, Intra-myocardial biomaterial injection therapy in the treatment of heart failure: Materials, outcomes and challenges, Acta Biomaterialia, vol.7, issue.1, pp.1-15, 2011.
DOI : 10.1016/j.actbio.2010.06.039

C. Yan and D. Pochan, Rheological properties of peptide-based hydrogels for biomedical and other applications, Chemical Society Reviews, vol.5, issue.suppl. II, pp.3528-3568, 2010.
DOI : 10.1039/b919449p

J. Kelm, E. Ehler, L. Nielsen, S. Schlatter, J. Perriard et al., Design of Artificial Myocardial Microtissues, Tissue Engineering, vol.10, issue.1-2, pp.201-215, 2004.
DOI : 10.1089/107632704322791853

J. Lee, Y. Park, S. Lee, S. Lee, and K. Lee, The effect of spacer arm length of an adhesion ligand coupled to an alginate gel on the control of fibroblast phenotype, Biomaterials, vol.31, issue.21, pp.5545-51, 2010.
DOI : 10.1016/j.biomaterials.2010.03.063

Z. Li, X. Guo, S. Matsushita, and J. Guan, Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels, Biomaterials, vol.32, issue.12, pp.3220-3252, 2011.
DOI : 10.1016/j.biomaterials.2011.01.050

N. Takehara, Y. Tsutsumi, K. Tateishi, T. Ogata, H. Tanaka et al., Controlled Delivery of Basic Fibroblast Growth Factor Promotes Human Cardiosphere-Derived Cell Engraftment to Enhance Cardiac Repair for Chronic Myocardial Infarction, Journal of the American College of Cardiology, vol.52, issue.23, pp.1858-65, 2008.
DOI : 10.1016/j.jacc.2008.06.052