M. Mayorga, A. Finan, and M. Penn, Pre-transplantation Specification of Stem Cells to Cardiac Lineage for Regeneration of Cardiac Tissue, Stem Cell Reviews and Reports, vol.285, issue.3, pp.51-60, 2009.
DOI : 10.1007/s12015-009-9050-8

D. O. Taylor, L. B. Edwards, and P. Aurora, Registry of the International Society for Heart and Lung Transplantation: Twenty-fifth Official Adult Heart Transplant Report???2008, The Journal of Heart and Lung Transplantation, vol.27, issue.9, pp.943-956, 2008.
DOI : 10.1016/j.healun.2008.06.017

R. Gaetani, L. Barile, and E. Forte, New Perspectives to Repair a Broken Heart, Cardiovascular & Hematological Agents in Medicinal Chemistry, vol.7, issue.2, pp.91-107, 2009.
DOI : 10.2174/187152509787847128

P. Menasche, Cardiac cell therapy: Lessons from clinical trials, Journal of Molecular and Cellular Cardiology, vol.50, issue.2, 2011.
DOI : 10.1016/j.yjmcc.2010.06.010

M. Rubart, M. H. Soonpaa, H. Nakajima, and L. J. Field, Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation, Journal of Clinical Investigation, vol.114, issue.6, pp.775-783, 2004.
DOI : 10.1172/JCI200421589

H. Reinecke, V. Poppa, and C. E. Murry, Skeletal Muscle Stem Cells Do Not Transdifferentiate Into Cardiomyocytes After Cardiac Grafting, Journal of Molecular and Cellular Cardiology, vol.34, issue.2, pp.241-249, 2002.
DOI : 10.1006/jmcc.2001.1507

B. Leobon, I. Garcin, P. Menasche, J. T. Vilquin, E. Audinat et al., Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host, Proceedings of the National Academy of Sciences of the United States of America, pp.7808-7811, 2003.
DOI : 10.1073/pnas.1232447100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC164669

D. A. Taylor, B. Z. Atkins, and P. Hungspreugs, Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation, Nature Medicine, vol.263, issue.8, pp.929-933, 1998.
DOI : 10.1016/S0963-6897(96)00230-8

S. Ghostine, C. Carrion, and L. C. Souza, Longterm efficacy of myoblast transplantation on regional structure and function after myocardial infarction, Circulation, vol.106, pp.131-136, 2002.

M. Gnecchi, Z. Zhang, A. Ni, and V. J. Dzau, Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy, Circulation Research, vol.103, issue.11, pp.1204-1219, 2008.
DOI : 10.1161/CIRCRESAHA.108.176826

P. Menasche, A. A. Hagege, and J. T. Vilquin, Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction, Journal of the American College of Cardiology, vol.41, issue.7, pp.1078-1083, 2003.
DOI : 10.1016/S0735-1097(03)00092-5

P. Menasche, O. Alfieri, and S. Janssens, The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First Randomized Placebo-Controlled Study of Myoblast Transplantation, Circulation, vol.117, issue.9, pp.1189-1200, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.734103

B. E. Strauer, M. Brehm, and T. Zeus, Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans, Circulation, vol.106, 1913.

D. Orlic, J. Kajstura, and S. Chimenti, Bone marrow stem cells regenerate infarcted myocardium, Pediatric Transplantation, vol.84, pp.701-705, 2001.
DOI : 10.1034/j.1399-3046.7.s3.13.x

D. Orlic, J. Kajstura, and S. Chimenti, Mobilized bone marrow cells repair the infarcted heart, improving function and survival, Proceedings of the National Academy of Sciences of the United States of America, pp.10344-10349, 2001.
DOI : 10.1073/pnas.181177898

E. T. Yeh, S. Zhang, H. D. Wu, M. Korbling, J. T. Willerson et al., Transdifferentiation of Human Peripheral Blood CD34+-Enriched Cell Population Into Cardiomyocytes, Endothelial Cells, and Smooth Muscle Cells In Vivo, Circulation, vol.108, issue.17, pp.2070-2073, 2003.
DOI : 10.1161/01.CIR.0000099501.52718.70

J. Kajstura, M. Rota, and B. Whang, Bone Marrow Cells Differentiate in Cardiac Cell Lineages After Infarction Independently of Cell Fusion, Circulation Research, vol.96, issue.1, pp.127-137, 2005.
DOI : 10.1161/01.RES.0000151843.79801.60

M. Rota, J. Kajstura, and T. Hosoda, Bone marrow cells adopt the cardiomyogenic fate in vivo, Proceedings of the National Academy of Sciences, vol.104, issue.45, pp.17783-17788, 2007.
DOI : 10.1073/pnas.0706406104

K. A. Jackson, S. M. Majka, and H. Wang, Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells, Journal of Clinical Investigation, vol.107, issue.11, pp.1395-1402, 2001.
DOI : 10.1172/JCI12150

L. B. Balsam, A. J. Wagers, J. L. Christensen, T. Kofidis, I. L. Weissman et al., Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium, Nature, vol.428, issue.6983, pp.668-673, 2004.
DOI : 10.1038/nature02460

M. A. Laflamme, K. Y. Chen, and A. V. Naumova, Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts, Nature Biotechnology, vol.48, issue.9, pp.1015-1024, 2007.
DOI : 10.1038/nbt1327

M. Alvarez-dolado, R. Pardal, and J. M. Garcia-verdugo, Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes, Nature, vol.425, issue.6961, pp.968-973, 2003.
DOI : 10.1038/nature02069

N. Terada, T. Hamazaki, and M. Oka, Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion, Nature, vol.416, issue.6880, pp.542-545, 2002.
DOI : 10.1038/nature730

M. J. Lipinski, G. G. Biondi-zoccai, and A. Abbate, Impact of Intracoronary Cell Therapy on Left Ventricular Function in the Setting of Acute Myocardial Infarction, Journal of the American College of Cardiology, vol.50, issue.18, pp.1761-1767, 2007.
DOI : 10.1016/j.jacc.2007.07.041

C. H. Yoon, M. Koyanagi, and K. Iekushi, Mechanism of Improved Cardiac Function After Bone Marrow Mononuclear Cell Therapy: Role of Cardiovascular Lineage Commitment, Circulation, vol.121, issue.18, 2001.
DOI : 10.1161/CIRCULATIONAHA.109.909291

C. Prat-vidal, S. Roura, and J. Farre, Umbilical Cord Blood-Derived Stem Cells Spontaneously Express Cardiomyogenic Traits, Transplantation Proceedings, vol.39, issue.7, pp.2434-2437, 2007.
DOI : 10.1016/j.transproceed.2007.06.016

S. Roura, J. Farre, and L. Hove-madsen, Exposure to cardiomyogenic stimuli fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells, Basic Research in Cardiology, vol.86, issue.4, pp.419-430, 2010.
DOI : 10.1007/s00395-009-0081-8

M. Gnecchi, H. He, and O. D. Liang, Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells, Nature Medicine, vol.92, issue.4, pp.367-368, 2005.
DOI : 10.1038/nm912

R. Uemura, M. Xu, N. Ahmad, and M. Ashraf, Bone Marrow Stem Cells Prevent Left Ventricular Remodeling of Ischemic Heart Through Paracrine Signaling, Circulation Research, vol.98, issue.11, pp.1414-1421, 2006.
DOI : 10.1161/01.RES.0000225952.61196.39

D. Orlic, J. Kajstura, S. Chimenti, D. M. Bodine, A. Leri et al., Transplanted Adult Bone Marrow Cells Repair Myocardial Infarcts in Mice, Annals of the New York Academy of Sciences, vol.81, issue.1, pp.221-229, 2001.
DOI : 10.1111/j.1749-6632.2001.tb03592.x

A. A. Kocher, M. D. Schuster, and M. J. Szabolcs, Neovascularization of ischemic myocardium by human bonemarrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function, Nature Medicine, vol.7, issue.4, pp.430-436, 2001.
DOI : 10.1038/86498

J. Y. Min, Y. Yang, and K. L. Converso, Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats, Journal of Applied Physiology, vol.92, pp.288-296, 2002.

K. R. Stevens, L. Pabon, V. Muskheli, and C. E. Murry, Scaffold-Free Human Cardiac Tissue Patch Created from Embryonic Stem Cells, Tissue Engineering Part A, vol.15, issue.6, pp.1211-1222, 2009.
DOI : 10.1089/ten.tea.2008.0151

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774496

J. L. Mignone, K. L. Kreutziger, S. L. Paige, and C. E. Murry, Cardiogenesis From Human Embryonic Stem Cells, Circulation Journal, vol.74, issue.12, pp.2517-2526, 2010.
DOI : 10.1253/circj.CJ-10-0958

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-676, 2006.
DOI : 10.1016/j.cell.2006.07.024

K. Takahashi, K. Tanabe, and M. Ohnuki, Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, issue.5, pp.861-872, 2007.
DOI : 10.1016/j.cell.2007.11.019

T. J. Nelson, A. Martinez-fernandez, S. Yamada, C. Perez-terzic, Y. Ikeda et al., Repair of Acute Myocardial Infarction by Human Stemness Factors Induced Pluripotent Stem Cells, Circulation, vol.120, issue.5, pp.408-416, 2009.
DOI : 10.1161/CIRCULATIONAHA.109.865154

K. Kaji, K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni et al., Virus-free induction of pluripotency and subsequent excision of reprogramming factors, Nature, vol.13, issue.7239, pp.771-775, 2009.
DOI : 10.1038/nature07864

D. Kim, C. H. Kim, and J. I. Moon, Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins, Cell Stem Cell, vol.4, issue.6, pp.472-476, 2009.
DOI : 10.1016/j.stem.2009.05.005

L. Warren, P. D. Manos, and T. Ahfeldt, Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA, Cell Stem Cell, vol.7, issue.5, 2010.
DOI : 10.1016/j.stem.2010.08.012

E. Willems, P. J. Bushway, and M. Mercola, Natural and Synthetic Regulators of Embryonic Stem Cell Cardiogenesis, Pediatric Cardiology, vol.104, issue.7, pp.635-642, 2009.
DOI : 10.1007/s00246-009-9409-2

R. L. Davis, H. Weintraub, and A. B. Lassar, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell, vol.51, issue.6, pp.987-1000, 1987.
DOI : 10.1016/0092-8674(87)90585-X

Q. Zhou, J. Brown, A. Kanarek, J. Rajagopal, and D. A. Melton, In vivo reprogramming of adult pancreatic exocrine cells to ??-cells, Nature, vol.429, issue.7213, pp.627-632, 2008.
DOI : 10.1038/nature07314

T. Vierbuchen, A. Ostermeier, Z. P. Pang, Y. Kokubu, T. C. Sudhof et al., Direct conversion of fibroblasts to functional neurons by defined factors, Nature, vol.48, issue.7284, pp.1035-1041, 2010.
DOI : 10.1038/nature08797

M. Ieda, J. D. Fu, and P. Delgado-olguin, Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors, Cell, vol.142, issue.3, pp.375-386, 2010.
DOI : 10.1016/j.cell.2010.07.002

R. Passier and C. Mummery, Getting to the Heart of the Matter: Direct Reprogramming to Cardiomyocytes, Cell Stem Cell, vol.7, issue.2, pp.139-141, 2010.
DOI : 10.1016/j.stem.2010.07.004

I. Chimenti, R. Gaetani, and L. Barile, Chapter 9 Evidence for the existence of resident cardiac stem cells, Regenerating the heart Sprinter Science &Business Media, 2011.

A. P. Beltrami, K. Urbanek, and J. Kajstura, Evidence That Human Cardiac Myocytes Divide after Myocardial Infarction, New England Journal of Medicine, vol.344, issue.23, pp.1750-1757, 2001.
DOI : 10.1056/NEJM200106073442303

O. Bergmann, R. D. Bhardwaj, and S. Bernard, Evidence for Cardiomyocyte Renewal in Humans, Science, vol.324, issue.5923, pp.98-102, 2009.
DOI : 10.1126/science.1164680

URL : https://hal.archives-ouvertes.fr/hal-00374382

P. C. Hsieh, V. F. Segers, and M. E. Davis, Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury, Nature Medicine, vol.116, issue.8, pp.970-974, 2007.
DOI : 10.1038/nm1618

Y. Zhang, T. S. Li, and S. T. Lee, Dedifferentiation and Proliferation of Mammalian Cardiomyocytes, PLoS ONE, vol.95, issue.9, p.12559, 2010.
DOI : 10.1371/journal.pone.0012559.s011

B. Kuhn, F. Del-monte, and R. J. Hajjar, Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair, Nature Medicine, vol.292, issue.8, pp.962-969, 2007.
DOI : 10.1038/nm1619

L. Barile, I. Chimenti, and R. Gaetani, Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration, Nature Clinical Practice Cardiovascular Medicine, vol.103, pp.9-14, 2007.
DOI : 10.1038/ncpcardio0738

A. M. Hierlihy, P. Seale, C. G. Lobe, M. A. Rudnicki, and L. A. Megeney, The post-natal heart contains a myocardial stem cell population, FEBS Letters, vol.91, issue.1-3, pp.239-243, 2002.
DOI : 10.1016/S0014-5793(02)03477-4

A. P. Beltrami, L. Barlucchi, and D. Torella, Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration, Cell, vol.114, issue.6, pp.763-776, 2003.
DOI : 10.1016/S0092-8674(03)00687-1

URL : http://doi.org/10.1016/s0092-8674(03)00687-1

H. Oh, S. B. Bradfute, and T. D. Gallardo, Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction, Proceedings of the National Academy of Sciences of the United States of America, pp.12313-12318, 2003.
DOI : 10.1073/pnas.2132126100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC218755

P. Van-vliet, M. Roccio, and A. M. Smits, Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy, Netherlands Heart Journal, vol.16, issue.5, pp.163-169, 2008.
DOI : 10.1007/BF03086138

A. M. Smits, P. Van-vliet, and C. H. Metz, Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology, Nature Protocols, vol.36, issue.2, pp.232-243, 2009.
DOI : 10.1038/nprot.2006.236

E. Messina, L. De-angelis, and G. Frati, Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart, Circulation Research, vol.95, issue.9, pp.911-921, 2004.
DOI : 10.1161/01.RES.0000147315.71699.51

R. R. Smith, L. Barile, and H. C. Cho, Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens, Circulation, vol.115, issue.7, pp.896-908, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.655209

P. V. Johnston, T. Sasano, and K. Mills, Engraftment, Differentiation, and Functional Benefits of Autologous Cardiosphere-Derived Cells in Porcine Ischemic Cardiomyopathy, Circulation, vol.120, issue.12, pp.1075-1083, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.816058

I. Chimenti, R. R. Smith, and T. S. Li, Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice, Circulation Research, vol.106, issue.5, pp.971-980, 2010.
DOI : 10.1161/CIRCRESAHA.109.210682

S. T. Lee, A. J. White, and S. Matsushita, Intramyocardial Injection of Autologous Cardiospheres or Cardiosphere-Derived Cells Preserves Function and Minimizes Adverse Ventricular Remodeling in Pigs With Heart Failure Post-Myocardial Infarction, Journal of the American College of Cardiology, vol.57, issue.4, pp.455-465, 2011.
DOI : 10.1016/j.jacc.2010.07.049

D. R. Davis, E. Kizana, and J. Terrovitis, Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies, Journal of Molecular and Cellular Cardiology, vol.49, issue.2, pp.312-321, 2010.
DOI : 10.1016/j.yjmcc.2010.02.019

T. S. Li, K. Cheng, and S. T. Lee, Cardiospheres Recapitulate a Niche-Like Microenvironment Rich in Stemness and Cell-Matrix Interactions, Rationalizing Their Enhanced Functional Potency for Myocardial Repair, STEM CELLS, vol.27, issue.11, 2010.
DOI : 10.1002/stem.532

F. Limana, C. Bertolami, and A. Mangoni, Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: Role of the pericardial fluid, Journal of Molecular and Cellular Cardiology, vol.48, issue.4, pp.609-618, 2010.
DOI : 10.1016/j.yjmcc.2009.11.008

D. Meglio, F. Castaldo, C. Nurzynska, D. Romano, V. Miraglia et al., Epicardial cells are missing from the surface of hearts with ischemic cardiomyopathy: A useful clue about the self-renewal potential of the adult human heart?, International Journal of Cardiology, vol.145, issue.2, 2009.
DOI : 10.1016/j.ijcard.2008.12.137

I. Bock-marquette, A. Saxena, M. D. White, J. M. Dimaio, and D. Srivastava, Thymosin ??4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair, Nature, vol.285, issue.7016, pp.466-472, 2004.
DOI : 10.1016/S0192-0561(97)00005-2

N. Smart, C. A. Risebro, and A. A. Melville, Thymosin ??4 induces adult epicardial progenitor mobilization and neovascularization, Nature, vol.296, issue.7124, pp.177-182, 2007.
DOI : 10.1038/nbt813

J. Terrovitis, K. F. Kwok, and R. Lautamaki, Ectopic Expression of the Sodium-Iodide Symporter Enables Imaging of Transplanted Cardiac Stem Cells In Vivo by Single-Photon Emission Computed Tomography or Positron Emission Tomography, Journal of the American College of Cardiology, vol.52, issue.20, pp.1652-1660, 2008.
DOI : 10.1016/j.jacc.2008.06.051

S. Ausoni and S. Sartore, From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration, The Journal of Cell Biology, vol.46, issue.3, pp.357-364, 2009.
DOI : 10.1038/nature07060

M. Dobaczewski, C. Gonzalez-quesada, and N. G. Frangogiannis, The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction, Journal of Molecular and Cellular Cardiology, vol.48, issue.3, pp.504-511, 2010.
DOI : 10.1016/j.yjmcc.2009.07.015

M. A. Pfeffer and E. Braunwald, Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications, Circulation, vol.81, issue.4, pp.1161-1172, 1990.
DOI : 10.1161/01.CIR.81.4.1161

P. A. Laura, D. R. Michela, and M. Silvia, Pro/Antiinflammatory cytokine imbalance in postischemic left ventricular remodeling, Mediators Inflamm, p.974694, 2010.

H. Okada, G. Takemura, and K. Kosai, Postinfarction Gene Therapy Against Transforming Growth Factor-?? Signal Modulates Infarct Tissue Dynamics and Attenuates Left Ventricular Remodeling and Heart Failure, Circulation, vol.111, issue.19, pp.2430-2437, 2005.
DOI : 10.1161/01.CIR.0000165066.71481.8E

L. Li, H. Okada, and G. Takemura, Postinfarction gene therapy with adenoviral vector expressing decorin mitigates cardiac remodeling and dysfunction, AJP: Heart and Circulatory Physiology, vol.297, issue.4, pp.1504-1513, 2009.
DOI : 10.1152/ajpheart.00194.2009

B. Widyantoro, N. Emoto, and K. Nakayama, Endothelial Cell-Derived Endothelin-1 Promotes Cardiac Fibrosis in Diabetic Hearts Through Stimulation of Endothelial-to-Mesenchymal Transition, Circulation, vol.121, issue.22, pp.2407-2418, 2010.
DOI : 10.1161/CIRCULATIONAHA.110.938217

A. Aicher, C. Heeschen, K. Sasaki, C. Urbich, A. M. Zeiher et al., Low-Energy Shock Wave for Enhancing Recruitment of Endothelial Progenitor Cells: A New Modality to Increase Efficacy of Cell Therapy in Chronic Hind Limb Ischemia, Circulation, vol.114, issue.25, pp.2823-2830, 2006.
DOI : 10.1161/CIRCULATIONAHA.106.628623

K. Zen, M. Okigaki, and Y. Hosokawa, Myocardium-targeted delivery of endothelial progenitor cells by ultrasound-mediated microbubble destruction improves cardiac function via an angiogenic response, Journal of Molecular and Cellular Cardiology, vol.40, issue.6, pp.799-809, 2006.
DOI : 10.1016/j.yjmcc.2006.03.012

A. Ghanem, C. Steingen, and F. Brenig, Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction, Journal of Molecular and Cellular Cardiology, vol.47, issue.3, pp.411-418, 2009.
DOI : 10.1016/j.yjmcc.2009.06.008

K. C. Wollert and H. Drexler, Cell therapy for the treatment of coronary heart disease: a critical appraisal, Nature Reviews Cardiology, vol.25, issue.4, pp.204-215, 2010.
DOI : 10.1038/nrcardio.2010.1

Y. L. Tang, W. Zhu, and M. Cheng, Hypoxic Preconditioning Enhances the Benefit of Cardiac Progenitor Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression, Circulation Research, vol.104, issue.10, pp.1209-1216, 2009.
DOI : 10.1161/CIRCRESAHA.109.197723

T. Akita, T. Murohara, and H. Ikeda, Hypoxic Preconditioning Augments Efficacy of Human Endothelial Progenitor Cells for Therapeutic Neovascularization, Laboratory Investigation, vol.118, issue.1, pp.65-73, 2003.
DOI : 10.1016/S0140-6736(02)09670-8

I. Rosova, M. Dao, B. Capoccia, D. Link, and J. A. Nolta, Hypoxic Preconditioning Results in Increased Motility and Improved Therapeutic Potential of Human Mesenchymal Stem Cells, Stem Cells, vol.25, issue.8, pp.2173-2182, 2008.
DOI : 10.1634/stemcells.2007-1104

T. S. Li, K. Cheng, and K. Malliaras, Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair, Cardiovascular Research, vol.89, issue.1, 2010.
DOI : 10.1093/cvr/cvq251

S. R. Datta, A. Brunet, and M. E. Greenberg, Cellular survival: a play in three Akts, Genes & Development, vol.13, issue.22, pp.2905-2927, 1999.
DOI : 10.1101/gad.13.22.2905

M. Mirotsou, Z. Zhang, and A. Deb, Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cellreleased paracrine factor mediating myocardial survival and repair, Proceedings of the National Academy of Sciences of the United States of America, pp.1643-1648, 2007.

M. P. Alfaro, M. Pagni, and A. Vincent, The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair, Proceedings of the National Academy of Sciences of the United States of America, pp.18366-18371, 2008.
DOI : 10.1073/pnas.0803437105

R. Gaetani, M. Ledda, and L. Barile, Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields, Cardiovascular Research, vol.82, issue.3, pp.411-420, 2009.
DOI : 10.1093/cvr/cvp067

E. Chavakis, A. Aicher, and C. Heeschen, Role of ??2-integrins for homing and neovascularization capacity of endothelial progenitor cells, The Journal of Experimental Medicine, vol.157, issue.1, pp.63-72, 2005.
DOI : 10.1084/jem.188.1.119

E. Chavakis, A. Hain, and M. Vinci, High-Mobility Group Box 1 Activates Integrin-Dependent Homing of Endothelial Progenitor Cells, Circulation Research, vol.100, issue.2, pp.204-212, 2007.
DOI : 10.1161/01.RES.0000257774.55970.f4

M. S. Penn, Importance of the SDF-1:CXCR4 Axis in Myocardial Repair, Circulation Research, vol.104, issue.10, pp.1133-1135, 2009.
DOI : 10.1161/CIRCRESAHA.109.198929

H. Ince, M. Petzsch, and H. D. Kleine, Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony- Stimulating Factor (FIRSTLINE-AMI) Trial, Circulation, vol.112, pp.73-80, 2005.

M. G. Engelmann, H. D. Theiss, and C. Hennig-theiss, Autologous Bone Marrow Stem Cell Mobilization Induced by Granulocyte Colony-Stimulating Factor After Subacute ST-Segment Elevation Myocardial Infarction Undergoing Late Revascularization, Journal of the American College of Cardiology, vol.48, issue.8, pp.1712-1721, 2006.
DOI : 10.1016/j.jacc.2006.07.044

URL : http://doi.org/10.1016/j.jacc.2006.07.044

F. Limana, M. C. Capogrossi, and A. Germani, The epicardium in cardiac repair: From the stem cell view, Pharmacology & Therapeutics, vol.129, issue.1, pp.82-96, 2010.
DOI : 10.1016/j.pharmthera.2010.09.002

A. Ouyang, R. Ng, and S. T. Yang, Long-Term Culturing of Undifferentiated Embryonic Stem Cells in Conditioned Media and Three-Dimensional Fibrous Matrices Without Extracellular Matrix Coating, Stem Cells, vol.101, issue.2, pp.447-454, 2007.
DOI : 10.1634/stemcells.2006-0322

R. Gaetani, G. Rizzitelli, and I. Chimenti, Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application, Journal of Cellular and Molecular Medicine, vol.14, pp.1071-1077, 2010.
DOI : 10.1111/j.1582-4934.2010.01078.x

M. E. Davis, P. C. Hsieh, and T. Takahashi, Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction, Proceedings of the National Academy of Sciences of the United States of America, pp.8155-8160, 2006.
DOI : 10.1073/pnas.0602877103

P. C. Hsieh, C. Macgillivray, J. Gannon, F. U. Cruz, and R. T. Lee, Local Controlled Intramyocardial Delivery of Platelet-Derived Growth Factor Improves Postinfarction Ventricular Function Without Pulmonary Toxicity, Circulation, vol.114, issue.7, pp.637-644, 2006.
DOI : 10.1161/CIRCULATIONAHA.106.639831

W. H. Zimmermann, K. Schneiderbanger, and P. Schubert, Tissue Engineering of a Differentiated Cardiac Muscle Construct, Circulation Research, vol.90, issue.2, pp.223-230, 2002.
DOI : 10.1161/hh0202.103644

W. H. Zimmermann, I. Melnychenko, and G. Wasmeier, Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts, Nature Medicine, vol.107, issue.4, pp.452-458, 2006.
DOI : 10.1016/S0735-1097(03)00092-5

T. Kofidis, P. Akhyari, and B. Wachsmann, A novel bioartificial myocardial tissue and its prospective use in cardiac surgery, European Journal of Cardio-Thoracic Surgery, vol.22, issue.2, pp.238-243, 2002.
DOI : 10.1016/S1010-7940(02)00256-7

M. Cortes-morichetti, G. Frati, and O. Schussler, Association Between a Cell-Seeded Collagen Matrix and Cellular Cardiomyoplasty for Myocardial Support and Regeneration, Tissue Engineering, vol.13, issue.11, pp.2681-2687, 2007.
DOI : 10.1089/ten.2006.0447

O. Schussler, C. Coirault, and M. Louis-tisserand, Use of arginine???glycine???aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft, Nature Clinical Practice Cardiovascular Medicine, vol.114, issue.3, pp.240-249, 2009.
DOI : 10.1038/ncpcardio1451

J. M. Singelyn and K. L. Christman, Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of Decellularized Matrices, Journal of Cardiovascular Translational Research, vol.13, issue.9, pp.478-486, 2010.
DOI : 10.1007/s12265-010-9202-x

M. P. Lutolf and J. A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering, Nature Biotechnology, vol.961, issue.1, pp.47-55, 2005.
DOI : 10.1172/JCI200418420

D. H. Sierra, Fibrin Sealant Adhesive Systems: A Review of Their Chemistry, Material Properties and Clinical Applications, Journal of Biomaterials Applications, vol.7, issue.4, pp.309-352, 1993.
DOI : 10.1177/088532829300700402

M. Naito, C. M. Stirk, E. B. Smith, and W. D. Thompson, Smooth Muscle Cell Outgrowth Stimulated by Fibrin Degradation Products, Thrombosis Research, vol.98, issue.2, pp.165-174, 2000.
DOI : 10.1016/S0049-3848(99)00202-9

W. D. Thompson, E. B. Smith, C. M. Stirk, F. I. Marshall, A. J. Stout et al., Angiogenic activity of fibrin degradation products is located in fibrin fragment E, The Journal of Pathology, vol.1, issue.1, pp.47-53, 1992.
DOI : 10.1002/path.1711680109

K. L. Christman, A. J. Vardanian, Q. Fang, R. E. Sievers, H. H. Fok et al., Injectable Fibrin Scaffold Improves Cell Transplant Survival, Reduces Infarct Expansion, and Induces Neovasculature Formation in Ischemic Myocardium, Journal of the American College of Cardiology, vol.44, issue.3, pp.654-660, 2004.
DOI : 10.1016/j.jacc.2004.04.040

J. Yu, K. L. Christman, E. Chin, R. E. Sievers, M. Saeed et al., Restoration of left ventricular geometry and improvement of left ventricular function in a rodent model of chronic ischemic cardiomyopathy, The Journal of Thoracic and Cardiovascular Surgery, vol.137, issue.1, pp.180-187, 2009.
DOI : 10.1016/j.jtcvs.2008.08.036

W. Dai, L. E. Wold, J. S. Dow, and R. A. Kloner, Thickening of the Infarcted Wall by Collagen Injection Improves Left Ventricular Function in Rats, Journal of the American College of Cardiology, vol.46, issue.4, pp.714-719, 2005.
DOI : 10.1016/j.jacc.2005.04.056

A. Albini, A. Melchiori, and A. Garofalo, Matrigel promotes retinoblastoma cell growthin vitro andin vivo, International Journal of Cancer, vol.208, issue.2, pp.234-240, 1992.
DOI : 10.1002/ijc.2910520214

E. Khor and L. Y. Lim, Implantable applications of chitin and chitosan, Biomaterials, vol.24, issue.13, pp.2339-2349, 2003.
DOI : 10.1016/S0142-9612(03)00026-7

H. Wang, J. Zhou, Z. Liu, and C. Wang, Injectable cardiac tissue engineering for the treatment of myocardial infarction, Journal of Cellular and Molecular Medicine, vol.14, pp.1044-1055, 2010.
DOI : 10.1111/j.1582-4934.2010.01046.x

K. Y. Lee and D. J. Mooney, Hydrogels for Tissue Engineering, Chemical Reviews, vol.101, issue.7, pp.1869-1879, 2001.
DOI : 10.1021/cr000108x

J. Leor, S. Tuvia, and V. Guetta, Intracoronary Injection of In Situ Forming Alginate Hydrogel Reverses Left Ventricular Remodeling After Myocardial Infarction in Swine, Journal of the American College of Cardiology, vol.54, issue.11, pp.1014-1023, 2009.
DOI : 10.1016/j.jacc.2009.06.010

N. Landa, L. Miller, and M. S. Feinberg, Effect of Injectable Alginate Implant on Cardiac Remodeling and Function After Recent and Old Infarcts in Rat, Circulation, vol.117, issue.11, pp.1388-1396, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.727420

X. Hao, E. A. Silva, and A. Mansson-broberg, Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction, Cardiovascular Research, vol.75, issue.1, pp.178-185, 2007.
DOI : 10.1016/j.cardiores.2007.03.028

J. Yu, Y. Gu, K. T. Du, S. Mihardja, R. E. Sievers et al., The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model, Biomaterials, vol.30, issue.5, pp.751-756, 2009.
DOI : 10.1016/j.biomaterials.2008.09.059

J. M. Singelyn, J. A. Dequach, S. B. Seif-naraghi, R. B. Littlefield, P. J. Schup-magoffin et al., Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering, Biomaterials, vol.30, issue.29, pp.5409-5416, 2009.
DOI : 10.1016/j.biomaterials.2009.06.045

S. B. Seif-naraghi, M. A. Salvatore, P. J. Schup-magoffin, D. P. Hu, and K. L. Christman, Design and Characterization of an Injectable Pericardial Matrix Gel: A Potentially Autologous Scaffold for Cardiac Tissue Engineering, Tissue Engineering Part A, vol.16, issue.6, pp.2017-2027, 2010.
DOI : 10.1089/ten.tea.2009.0768