V. Dubowitz, Muscle Disorders in Childhood, 1995.
DOI : 10.1159/000400687

T. O. Crawford and C. A. Pardo, The Neurobiology of Childhood Spinal Muscular Atrophy, Neurobiology of Disease, vol.3, issue.2, pp.97-110, 1996.
DOI : 10.1006/nbdi.1996.0010

S. Lefebvre, L. Burglen, S. Reboullet, O. Clermont, P. Burlet et al., Identification and characterization of a spinal muscular atrophy-determining gene, Cell, vol.80, issue.1, pp.155-165, 1995.
DOI : 10.1016/0092-8674(95)90460-3

A. Fidzianska, H. H. Goebel, and I. Warlo, ACUTE INFANTILE SPINAL MUSCULAR ATROPHY, Brain, vol.113, issue.2, pp.433-445, 1990.
DOI : 10.1093/brain/113.2.433

L. Stevens, B. Bastide, C. A. Maurage, E. Dupont, V. Montel et al., Childhood spinal muscular atrophy induces alterations in contractile and regulatory protein isoform expressions, Neuropathology and Applied Neurobiology, vol.23, issue.6, pp.659-670, 2008.
DOI : 10.1111/j.1365-2990.2008.00950.x

O. Biondi, C. Grondard, S. Lecolle, S. Deforges, C. Pariset et al., Exercise-Induced Activation of NMDA Receptor Promotes Motor Unit Development and Survival in a Type 2 Spinal Muscular Atrophy Model Mouse, Journal of Neuroscience, vol.28, issue.4, pp.953-962, 2008.
DOI : 10.1523/JNEUROSCI.3237-07.2008

URL : https://hal.archives-ouvertes.fr/hal-00306035

L. Kong, X. Wang, D. W. Choe, M. Polley, B. G. Burnett et al., Impaired Synaptic Vesicle Release and Immaturity of Neuromuscular Junctions in Spinal Muscular Atrophy Mice, Journal of Neuroscience, vol.29, issue.3, pp.842-851, 2009.
DOI : 10.1523/JNEUROSCI.4434-08.2009

T. O. Gavrilina, V. L. Mcgovern, E. Workman, T. O. Crawford, R. G. Gogliotti et al., Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect, Human Molecular Genetics, vol.17, issue.8, pp.1063-1075, 2008.
DOI : 10.1093/hmg/ddm379

G. H. Park, Y. Maeno-hikichi, T. Awano, L. T. Landmesser, and U. R. Monani, Reduced Survival of Motor Neuron (SMN) Protein in Motor Neuronal Progenitors Functions Cell Autonomously to Cause Spinal Muscular Atrophy in Model Mice Expressing the Human Centromeric (SMN2) Gene, Journal of Neuroscience, vol.30, issue.36, pp.12005-12019, 2010.
DOI : 10.1523/JNEUROSCI.2208-10.2010

S. Nicole, B. Desforges, G. Millet, J. Lesbordes, C. Cifuentes-diaz et al., gene defect in differentiated skeletal muscle, The Journal of Cell Biology, vol.18, issue.3, pp.571-582, 2003.
DOI : 10.1016/S1534-5807(01)00049-1

D. Shafey, P. D. Cote, and R. Kothary, Hypomorphic Smn knockdown C2C12 myoblasts reveal intrinsic defects in myoblast fusion and myotube morphology, Experimental Cell Research, vol.311, issue.1, pp.49-61, 2005.
DOI : 10.1016/j.yexcr.2005.08.019

S. Braun, B. Croizat, M. C. Lagrange, J. M. Warter, and P. Poindron, Constitutive muscular abnormalities in culture in spinal muscular atrophy, The Lancet, vol.345, issue.8951, pp.694-695, 1995.
DOI : 10.1016/S0140-6736(95)90869-2

H. C. Chang, D. N. Dimlich, T. Yokokura, A. Mukherjee, M. W. Kankel et al., Modeling Spinal Muscular Atrophy in Drosophila, PLoS ONE, vol.49, issue.9, p.3209, 2008.
DOI : 10.1371/journal.pone.0003209.s006

C. Duan, H. Ren, and S. Gao, Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation, General and Comparative Endocrinology, vol.167, issue.3, pp.344-351, 2010.
DOI : 10.1016/j.ygcen.2010.04.009

A. Musaro, K. Mccullagh, A. Paul, L. Houghton, G. Dobrowolny et al., Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle, Nature Genetics, vol.27, issue.2, pp.195-200, 2001.
DOI : 10.1038/84839

E. R. Barton, L. Morris, A. Musaro, N. Rosenthal, and H. L. Sweeney, mice, The Journal of Cell Biology, vol.78, issue.1, pp.137-148, 2002.
DOI : 10.1074/jbc.M004108200

P. Caroni and P. Grandes, Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors, The Journal of Cell Biology, vol.110, issue.4, pp.1307-1317, 1990.
DOI : 10.1083/jcb.110.4.1307

G. Dobrowolny, C. Giacinti, L. Pelosi, C. Nicoletti, N. Winn et al., Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model, The Journal of Cell Biology, vol.105, issue.2, pp.193-199, 2005.
DOI : 10.1016/S0896-6273(00)80086-0

B. K. Kaspar, J. Llado, N. Sherkat, J. D. Rothstein, and F. H. Gage, Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model, Science, vol.301, issue.5634, pp.839-842, 2003.
DOI : 10.1126/science.1086137

I. Palazzolo, C. Stack, L. Kong, A. Musaro, H. Adachi et al., Overexpression of IGF-1 in Muscle Attenuates Disease in a Mouse Model of Spinal and Bulbar Muscular Atrophy, Neuron, vol.63, issue.3, pp.316-328, 2009.
DOI : 10.1016/j.neuron.2009.07.019

T. T. Le, L. T. Pham, M. E. Butchbach, H. L. Zhang, U. R. Monani et al., SMN??7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN, Human Molecular Genetics, vol.14, issue.6, pp.845-857, 2005.
DOI : 10.1093/hmg/ddi078

S. Kariya, G. H. Park, Y. Maeno-hikichi, O. Leykekhman, C. Lutz et al., Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy, Human Molecular Genetics, vol.17, issue.16, pp.2552-2569, 2008.
DOI : 10.1093/hmg/ddn156

B. F. El-khodor, N. Edgar, A. Chen, M. L. Winberg, C. Joyce et al., Identification of a battery of tests for drug candidate evaluation in the SMN??7 neonate model of spinal muscular atrophy, Experimental Neurology, vol.212, issue.1, pp.29-43, 2008.
DOI : 10.1016/j.expneurol.2008.02.025

C. R. Heier and C. J. Didonato, Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and 1852, Human Molecular Genetics, vol.20, issue.9, 2009.

A. M. Avila, B. G. Burnett, A. A. Taye, F. Gabanella, M. A. Knight et al., Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy, Journal of Clinical Investigation, vol.117, issue.3, pp.659-671, 2007.
DOI : 10.1172/JCI29562DS1

H. L. Narver, L. Kong, B. G. Burnett, D. W. Choe, M. Bosch-marce et al., Sustained improvement of spinal muscular atrophy mice treated with trichostatin a plus nutrition, Annals of Neurology, vol.120, issue.4, pp.465-470, 2008.
DOI : 10.1002/ana.21449

D. J. Battle, M. Kasim, J. Yong, F. Lotti, C. K. Lau et al., The SMN Complex: An Assembly Machine for RNPs, Cold Spring Harbor Symposia on Quantitative Biology, vol.19, issue.0, pp.313-320, 2006.
DOI : 10.1128/MCB.24.7.2747-2756.2004

L. Pellizzoni, Chaperoning ribonucleoprotein biogenesis in health and disease, EMBO reports, vol.19, issue.4, pp.340-345, 2007.
DOI : 10.1523/JNEUROSCI.3967-05.2006

F. Gabanella, M. E. Butchbach, L. Saieva, C. Carissimi, A. H. Burghes et al., Ribonucleoprotein Assembly Defects Correlate with Spinal Muscular Atrophy Severity and Preferentially Affect a Subset of Spliceosomal snRNPs, PLoS ONE, vol.20, issue.9, p.921, 2007.
DOI : 10.1371/journal.pone.0000921.s002

Z. Zhang, F. Lotti, K. Dittmar, I. Younis, L. Wan et al., SMN Deficiency Causes Tissue-Specific Perturbations in the Repertoire of snRNAs and Widespread Defects in Splicing, Cell, vol.133, issue.4, pp.585-600, 2008.
DOI : 10.1016/j.cell.2008.03.031

D. Baumer, S. Lee, G. Nicholson, J. L. Davies, N. J. Parkinson et al., Alternative Splicing Events Are a Late Feature of Pathology in a Mouse Model of Spinal Muscular Atrophy, PLoS Genetics, vol.57, issue.12, p.1000773, 2009.
DOI : 10.1371/journal.pgen.1000773.s018

L. A. Menke, B. T. Poll-the, S. A. Clur, C. M. Bilardo, A. C. Van-der-wal et al., Congenital heart defects in spinal muscular atrophy type I: A clinical report of two siblings and a review of the literature, American Journal of Medical Genetics Part A, vol.52, issue.6, pp.146-740, 2008.
DOI : 10.1002/ajmg.a.32233

S. Rudnik-schoneborn, R. Heller, C. Berg, C. Betzler, T. Grimm et al., Congenital heart disease is a feature of severe infantile spinal muscular atrophy, Journal of Medical Genetics, vol.45, issue.10, pp.635-638, 2008.
DOI : 10.1136/jmg.2008.057950

Q. Araujo-ade, M. Araujo, and K. J. Swoboda, Vascular Perfusion Abnormalities in Infants with Spinal Muscular Atrophy, The Journal of Pediatrics, vol.155, issue.2, pp.292-294, 2009.
DOI : 10.1016/j.jpeds.2009.01.071

A. K. Bevan, K. R. Hutchinson, K. D. Foust, L. Braun, V. L. Mcgovern et al., Early heart failure in the SMN??7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery, Human Molecular Genetics, vol.19, issue.20, pp.3895-3905, 2010.
DOI : 10.1093/hmg/ddq300

M. Shababi, J. Habibi, H. T. Yang, S. M. Vale, W. A. Sewell et al., Cardiac defects contribute to the pathology of spinal muscular atrophy models, Human Molecular Genetics, vol.19, issue.20, pp.4059-4071, 2010.
DOI : 10.1093/hmg/ddq329

C. R. Heier, R. Satta, C. Lutz, and C. J. Didonato, Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice, Human Molecular Genetics, vol.19, issue.20, pp.3906-3918, 2010.
DOI : 10.1093/hmg/ddq330

S. Rudnik-schoneborn, S. Vogelgesang, S. Armbrust, L. Graul-neumann, C. Fusch et al., Digital necroses and vascular thrombosis in severe spinal muscular atrophy, Muscle & Nerve, vol.165, issue.1, pp.144-147, 2010.
DOI : 10.1002/mus.21654

E. R. Barton, The ABCs of IGF-I isoforms: impact on muscle hypertrophy and implications for repair, Applied Physiology, Nutrition, and Metabolism, vol.31, issue.6, pp.791-797, 2006.
DOI : 10.1139/h06-054

T. Shavlakadze, J. Chai, K. Maley, G. Cozens, G. Grounds et al., A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo, Journal of Cell Science, vol.123, issue.6, pp.960-971, 2010.
DOI : 10.1242/jcs.061119

A. K. Bruce, E. Jacobsen, H. Dossing, and J. Kondrup, Hypoglycaemia in spinal muscular atrophy, Lancet, vol.346, pp.609-610, 1995.

M. C. Orngreen, M. Zacho, A. Hebert, M. Laub, and J. Vissing, Patients with severe muscle wasting are prone to develop hypoglycemia during fasting, Neurology, vol.61, issue.7, pp.61-997, 2003.
DOI : 10.1212/01.WNL.0000086813.59722.72

M. E. Butchbach, F. F. Rose, . Jr, S. Rhoades, J. Marston et al., Effect of diet on the survival and phenotype of a mouse model for spinal muscular atrophy, Biochemical and Biophysical Research Communications, vol.391, issue.1, pp.835-840, 2010.
DOI : 10.1016/j.bbrc.2009.11.148

M. Oskoui, G. Levy, C. J. Garland, J. M. Gray, J. O-'hagen et al., The changing natural history of spinal muscular atrophy type 1, Neurology, vol.69, issue.20, pp.1931-1936, 2007.
DOI : 10.1212/01.wnl.0000290830.40544.b9

C. J. Sumner, C. D. Wee, L. C. Warsing, D. W. Choe, A. S. Ng et al., Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice, Human Molecular Genetics, vol.18, issue.17, pp.3145-3152, 2009.
DOI : 10.1093/hmg/ddp253

O. Biondi, J. Branchu, G. Sanchez, C. Lancelin, S. Deforges et al., In Vivo NMDA Receptor Activation Accelerates Motor Unit Maturation, Protects Spinal Motor Neurons, and Enhances SMN2 Gene Expression in Severe Spinal Muscular Atrophy Mice, Journal of Neuroscience, vol.30, issue.34, pp.11288-11299, 2010.
DOI : 10.1523/JNEUROSCI.1764-10.2010

K. K. Ling, M. Y. Lin, B. Zingg, Z. Feng, and C. P. Ko, Synaptic Defects in the Spinal and Neuromuscular Circuitry in a Mouse Model of Spinal Muscular Atrophy, PLoS ONE, vol.311, issue.11, p.15457, 2010.
DOI : 10.1371/journal.pone.0015457.s005

G. Z. Mentis, W. Liu, D. Blivis, E. Drobac, M. E. Crowder et al., Early Functional Impairment of Sensory-Motor Connectivity in a Mouse Model of Spinal Muscular Atrophy, Neuron, vol.69, issue.3, pp.453-467, 2010.
DOI : 10.1016/j.neuron.2010.12.032

A. Musaro, G. Dobrowolny, and N. Rosenthal, The neuroprotective effects of a locally acting IGF-1 isoform, Experimental Gerontology, vol.42, issue.1-2, pp.76-80, 2007.
DOI : 10.1016/j.exger.2006.05.004

B. Sakmann and H. R. Brenner, Change in synaptic channel gating during neuromuscular development, Nature, vol.55, issue.5686, pp.401-402, 1978.
DOI : 10.1083/jcb.23.2.217

G. D. Fischbach and S. M. Schuetze, A post-natal decrease in acetylcholine channel open time at rat end-plates., The Journal of Physiology, vol.303, issue.1, pp.125-137, 1980.
DOI : 10.1113/jphysiol.1980.sp013275

M. L. Messi and O. Delbono, Target-derived trophic effect on skeletal muscle innervation in senescent mice, J. Neurosci, vol.23, pp.1351-1359, 2003.

C. M. Simon, S. Jablonka, R. Ruiz, L. Tabares, and M. Sendtner, Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy, Human Molecular Genetics, vol.19, issue.6, pp.973-986, 2010.
DOI : 10.1093/hmg/ddp562

U. R. Monani, M. T. Pastore, T. O. Gavrilina, S. Jablonka, T. T. Le et al., A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy, The Journal of Cell Biology, vol.45, issue.1, pp.41-52, 2003.
DOI : 10.1038/sj.gt.3301550

L. E. Kernochan, M. L. Russo, N. S. Woodling, T. N. Huynh, A. M. Avila et al., The role of histone acetylation in SMN gene expression, Human Molecular Genetics, vol.14, issue.9, pp.1171-1182, 2005.
DOI : 10.1093/hmg/ddi130