A. Musarò, State of the art and the dark side of amyotrophic lateral sclerosis, World Journal of Biological Chemistry, vol.1, issue.5, pp.62-68, 2010.
DOI : 10.4331/wjbc.v1.i5.62

P. Pasinelli and R. Brown, Molecular biology of amyotrophic lateral sclerosis: insights from genetics, Nature Reviews Neuroscience, vol.6, issue.2, pp.710-723, 2006.
DOI : 10.1038/nrn1971

L. Bruijn, T. Miller, and D. Cleveland, UNRAVELING THE MECHANISMS INVOLVED IN MOTOR NEURON DEGENERATION IN ALS, Annual Review of Neuroscience, vol.27, issue.1, pp.723-749, 2004.
DOI : 10.1146/annurev.neuro.27.070203.144244

D. Jaarsma, E. Teuling, E. Haasdijk, D. Zeeuw, C. Hoogenraad et al., Neuron-Specific Expression of Mutant Superoxide Dismutase Is Sufficient to Induce Amyotrophic Lateral Sclerosis in Transgenic Mice, Journal of Neuroscience, vol.28, issue.9, pp.2075-2088, 2008.
DOI : 10.1523/JNEUROSCI.5258-07.2008

M. Gurney, H. Pu, A. Chiu, D. Canto, M. Polchow et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, vol.264, issue.5166, pp.1772-1775, 1994.
DOI : 10.1126/science.8209258

G. Dobrowolny, M. Aucello, E. Rizzuto, S. Beccafico, C. Mammucari et al., Skeletal Muscle Is a Primary Target of SOD1G93A-Mediated Toxicity, Cell Metabolism, vol.8, issue.5, pp.425-436, 2008.
DOI : 10.1016/j.cmet.2008.09.002

L. Dupuis and J. Loeffler, Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models, Current Opinion in Pharmacology, vol.9, issue.3, pp.341-346, 2009.
DOI : 10.1016/j.coph.2009.03.007

J. Zhou, Y. J. Fu, R. Liu, E. Siddique, T. Ríos et al., Hyperactive Intracellular Calcium Signaling Associated with Localized Mitochondrial Defects in Skeletal Muscle of an Animal Model of Amyotrophic Lateral Sclerosis, Journal of Biological Chemistry, vol.285, issue.1, pp.705-712, 2010.
DOI : 10.1074/jbc.M109.041319

M. Wong and L. Martin, Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice, Human Molecular Genetics, vol.19, issue.11, pp.2284-2302, 2010.
DOI : 10.1093/hmg/ddq106

G. Dobrowolny, M. Aucello, M. Molinaro, and A. Musarò, Local expression of mIgf-1 modulates ubiquitin, caspase and CDK5 expression in skeletal muscle of an ALS mouse model, Neurological Research, vol.39, issue.2, pp.131-136, 2008.
DOI : 10.1046/j.1365-201x.1999.00618.x

E. Dupont-versteegden, Apoptosis in muscle atrophy: Relevance to sarcopenia, Experimental Gerontology, vol.40, issue.6, pp.473-481, 2005.
DOI : 10.1016/j.exger.2005.04.003

J. Li and J. Yuan, Caspases in apoptosis and beyond, Oncogene, vol.116, issue.48, pp.6194-6206, 2008.
DOI : 10.1016/S0092-8674(00)80501-2

J. Cheong, S. Chong, J. Kim, J. Eom, H. Jeung et al., Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells, Clin Cancer Res, vol.9, pp.5018-5027, 2003.

D. Tews, Muscle-fiber apoptosis in neuromuscular diseases, Muscle & Nerve, vol.19, issue.4, pp.443-458, 2005.
DOI : 10.1002/mus.20348

D. Tews, W. Behrhof, and S. Schindler, Expression patterns of initiator and effector caspases in denervated human skeletal muscle, Muscle & Nerve, vol.81, issue.2, pp.175-181, 2005.
DOI : 10.1002/mus.20253

P. Siu and S. Alway, Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss, Frontiers in Bioscience, vol.Volume, issue.14, pp.432-452, 2009.
DOI : 10.2741/3253

G. Dobrowolny, C. Giacinti, L. Pelosi, C. Nicoletti, N. Winn et al., Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model, The Journal of Cell Biology, vol.105, issue.2, pp.193-199, 2005.
DOI : 10.1016/S0896-6273(00)80086-0

S. Schiaffino, M. Sandri, and M. Murgia, Activity-Dependent Signaling Pathways Controlling Muscle Diversity and Plasticity, Physiology, vol.22, issue.4, pp.269-278, 2007.
DOI : 10.1152/physiol.00009.2007

N. Jokic, J. Gonzalez-de-aguilar, L. Dimou, S. Lin, A. Fergani et al., The neurite outgrowth inhibitor Nogo-A promotes denervation in an amyotrophic lateral sclerosis model, EMBO reports, vol.23, issue.11, pp.1162-1167, 2006.
DOI : 10.1016/j.nbd.2005.06.005

V. Witzemann, H. Brenner, and B. Sakmann, Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses, The Journal of Cell Biology, vol.114, issue.1, pp.125-141, 1991.
DOI : 10.1083/jcb.114.1.125

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2289058

Y. Chung, K. Joo, H. Lim, M. Cho, D. Kim et al., Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1G93A transgenic mice, Brain Research, vol.1050, issue.1-2, pp.203-209, 2005.
DOI : 10.1016/j.brainres.2005.05.060

L. Barbeito, M. Pehar, P. Cassina, M. Vargas, H. Peluffo et al., A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis, Brain Research Reviews, vol.47, issue.1-3, pp.263-274, 2004.
DOI : 10.1016/j.brainresrev.2004.05.003

D. Glass, Signalling pathways that mediate skeletal muscle hypertrophy and atrophy, Nature Cell Biology, vol.5, issue.2, pp.87-90, 2003.
DOI : 10.1038/ncb0203-87

M. Sandri, C. Sandri, A. Gilbert, C. Skurk, E. Calabria et al., Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy, Cell, vol.117, issue.3, pp.399-412, 2004.
DOI : 10.1016/S0092-8674(04)00400-3