A. R. Fersht, From the first protein structures to our current knowledge of protein folding: delights and scepticisms, Nature Reviews Molecular Cell Biology, vol.74, issue.8, pp.650-654, 2008.
DOI : 10.1038/nrm2446

N. Calosci, C. N. Chi, B. Richter, C. Camilloni, A. Engström et al., Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins, Proceedings of the National Academy of Sciences, vol.105, issue.49, pp.19241-19246, 2008.
DOI : 10.1073/pnas.0804774105

C. N. Chi, S. Gianni, N. Calosci, C. Travaglini-allocatelli, K. Engström et al., A conserved folding mechanism for PDZ domains, FEBS Letters, vol.4, issue.6, pp.1109-1113, 2007.
DOI : 10.1016/j.febslet.2007.02.011

C. Travaglini-allocatelli, S. Gianni, V. Morea, A. Tramontano, T. Soulimane et al., Exploring the Cytochrome c Folding Mechanism: CYTOCHROME c552 FROM THERMUS THERMOPHILUS FOLDS THROUGH AN ON-PATHWAY INTERMEDIATE, Journal of Biological Chemistry, vol.278, issue.42, pp.41136-41140, 2003.
DOI : 10.1074/jbc.M303990200

C. A. Wilson, J. Kreychman, and M. Gerstein, Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores, Journal of Molecular Biology, vol.297, issue.1, pp.233-249, 2000.
DOI : 10.1006/jmbi.2000.3550

G. D. Rose and T. P. Creamer, Protein folding: Predicting predicting, Proteins: Structure, Function, and Genetics, vol.89, issue.1, pp.1-3, 1994.
DOI : 10.1002/prot.340190102

S. Dalal, S. Balasubramanian, R. , and L. , Protein alchemy: Changing ??-sheet into ??-helix, Nature Structural Biology, vol.3, issue.7, pp.548-552, 1997.
DOI : 10.1107/S0021889891004399

A. R. Davidson, A folding space odyssey, Proceedings of the National Academy of Sciences, vol.105, issue.8, pp.2759-2760, 2008.
DOI : 10.1073/pnas.0800030105

P. A. Alexander, Y. He, Y. Chen, J. Orban, and P. N. Bryan, The design and characterization of two proteins with 88% sequence identity but different structure and function, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.11963-11968, 2007.
DOI : 10.1073/pnas.0700922104

Y. He, Y. Chen, P. Alexander, P. N. Bryan, and J. Orban, NMR structures of two designed proteins with high sequence identity but different fold and function, Proceedings of the National Academy of Sciences, vol.105, issue.38, pp.14412-14417, 2008.
DOI : 10.1073/pnas.0805857105

M. Silow and M. Oliveberg, Transient aggregates in protein folding are easily mistaken for folding intermediates, Proceedings of the National Academy of Sciences, vol.94, issue.12, pp.6084-6086, 1997.
DOI : 10.1073/pnas.94.12.6084

M. M. Santoro and D. W. Bolen, Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl .alpha.-chymotrypsin using different denaturants, Biochemistry, vol.27, issue.21, pp.8063-8068, 1988.
DOI : 10.1021/bi00421a014

S. E. Jackson and A. R. Fersht, Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition, Biochemistry, vol.30, issue.43, pp.10428-10435, 1991.
DOI : 10.1021/bi00107a010

A. R. Fersht, A. Matouschek, and L. Serrano, The folding of an enzyme, Journal of Molecular Biology, vol.224, issue.3, pp.771-782, 1992.
DOI : 10.1016/0022-2836(92)90561-W

M. Levitt, M. Hirshberg, R. Sharon, and V. Daggett, Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution, Computer Physics Communications, vol.91, issue.1-3, pp.215-231, 1995.
DOI : 10.1016/0010-4655(95)00049-L

M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig, and V. Daggett, Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution, The Journal of Physical Chemistry B, vol.101, issue.25, pp.5051-5061, 1997.
DOI : 10.1021/jp964020s

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1002/bip.360221211

B. Lee and F. M. Richards, The interpretation of protein structures: Estimation of static accessibility, Journal of Molecular Biology, vol.55, issue.3, pp.379-400, 1971.
DOI : 10.1016/0022-2836(71)90324-X

A. Li and V. Daggett, Characterization of the transition state of protein unfolding by use of molecular dynamics: chymotrypsin inhibitor 2., Proceedings of the National Academy of Sciences, vol.91, issue.22, pp.10430-10434, 1994.
DOI : 10.1073/pnas.91.22.10430

A. Li and V. Daggett, Identification and Characterization of the Unfolding Transition State of Chymotrypsin Inhibitor 2 by Molecular Dynamics Simulations, Journal of Molecular Biology, vol.257, issue.2, pp.412-429, 1996.
DOI : 10.1006/jmbi.1996.0172

C. D. Geierhaas, A. A. Nickson, K. Lindorff-larsen, J. Clarke, and M. Vendruscolo, BPPred: A Web-based computational tool for predicting biophysical parameters of proteins, Protein Science, vol.16, issue.1, pp.125-134, 2007.
DOI : 10.1110/ps.062383807

U. Mayor, N. R. Guydosh, C. M. Johnson, J. G. Grossmann, S. Sato et al., The complete folding pathway of a protein from nanoseconds to microseconds, Nature, vol.17, issue.6925, pp.863-867, 2003.
DOI : 10.1093/emboj/cdf417

T. L. Religa, J. S. Markson, U. Mayor, S. M. Freund, and A. R. Fersht, Solution structure of a protein denatured state and folding intermediate, Nature, vol.44, issue.7061, pp.1053-1056, 2005.
DOI : 10.1021/ja981686m

G. W. White, S. Gianni, J. G. Grossmann, P. Jemth, A. R. Fersht et al., Simulation and Experiment Conspire to Reveal Cryptic Intermediates and a Slide from the Nucleation-condensation to Framework Mechanism of Folding, Journal of Molecular Biology, vol.350, issue.4, pp.757-775, 2005.
DOI : 10.1016/j.jmb.2005.05.005

I. E. Sánchez and T. Kiefhaber, Evidence for Sequential Barriers and Obligatory Intermediates in Apparent Two-state Protein Folding, Journal of Molecular Biology, vol.325, issue.2, pp.367-376, 2003.
DOI : 10.1016/S0022-2836(02)01230-5

S. N. Timasheff, The Control of Protein Stability and Association by Weak Interactions with Water: How Do Solvents Affect These Processes?, Annual Review of Biophysics and Biomolecular Structure, vol.22, issue.1, pp.67-97, 1993.
DOI : 10.1146/annurev.bb.22.060193.000435

V. Muñoz and L. Serrano, Development of the multiple sequence approximation within the AGADIR model of ??-helix formation: Comparison with Zimm-Bragg and Lifson-Roig formalisms, Biopolymers, vol.34, issue.5, pp.495-509, 1997.
DOI : 10.1002/(SICI)1097-0282(19970415)41:5<495::AID-BIP2>3.0.CO;2-H

P. A. Alexander, Y. He, Y. Chen, J. Orban, and P. N. Bryan, A minimal sequence code for switching protein structure and function, Proceedings of the National Academy of Sciences, vol.106, issue.50, pp.21149-21154, 2009.
DOI : 10.1073/pnas.0906408106

A. L. Watters, P. Deka, C. Corrent, D. Callender, G. Varani et al., The Highly Cooperative Folding of Small Naturally Occurring Proteins Is Likely the Result of Natural Selection, Cell, vol.128, issue.3, pp.613-624, 2007.
DOI : 10.1016/j.cell.2006.12.042

C. Tanford, Protein Denaturation, Adv. Protein Chem, vol.24, pp.1-95, 1970.
DOI : 10.1016/S0065-3233(08)60241-7

B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard et al., Design of a Novel Globular Protein Fold with Atomic-Level Accuracy, Science, vol.302, issue.5649, pp.1364-1368, 2003.
DOI : 10.1126/science.1089427

M. O. Lindberg and M. Oliveberg, Malleability of protein folding pathways: a simple reason for complex behaviour, Current Opinion in Structural Biology, vol.17, issue.1, pp.21-29, 2007.
DOI : 10.1016/j.sbi.2007.01.008

I. A. Hubner, M. Lindberg, E. Haglund, M. Oliveberg, and E. I. Shakhnovich, Common Motifs and Topological Effects in the Protein Folding Transition State, Journal of Molecular Biology, vol.359, issue.4, pp.1075-1085, 2006.
DOI : 10.1016/j.jmb.2006.04.015

E. Haglund, M. O. Lindberg, and M. Oliveberg, Changes of Protein Folding Pathways by Circular Permutation: OVERLAPPING NUCLEI PROMOTE GLOBAL COOPERATIVITY, Journal of Biological Chemistry, vol.283, issue.41, pp.27904-27915, 2008.
DOI : 10.1074/jbc.M801776200

B. G. Wensley, M. Gärtner, W. X. Choo, S. Batey, C. et al., Different Members of a Simple Three-Helix Bundle Protein Family Have Very Different Folding Rate Constants and Fold by Different Mechanisms, Journal of Molecular Biology, vol.390, issue.5, pp.1074-1085, 2009.
DOI : 10.1016/j.jmb.2009.05.010

Y. Ivarsson, C. Travaglini-allocatelli, M. Brunori, and S. Gianni, Engineered Symmetric Connectivity of Secondary Structure Elements Highlights Malleability of Protein Folding Pathways, Journal of the American Chemical Society, vol.131, issue.33, pp.11727-11733, 2009.
DOI : 10.1021/ja900438b

Y. Ivarsson, C. Travaglini-allocatelli, V. Morea, M. Brunori, and S. Gianni, The folding pathway of an engineered circularly permuted PDZ domain, Protein Engineering Design and Selection, vol.21, issue.3, pp.155-160, 2008.
DOI : 10.1093/protein/gzm077