J. J. S-t-e-r-n, M. J. , B. Y. R-u-b-i-n, and S. L. Murray, A n d e r s o n ,a n dH Role of L3T4+ and Lyt-2+ cells in experimental visceral leishmaniasis, Journal of Immunology, vol.140, issue.11, pp.3971-3977, 1988.

M. Ato, S. Stäger, C. R. Engwerda, and P. M. Kaye, Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis, Nature Immunology, vol.3, issue.12, pp.1185-1191, 2002.
DOI : 10.1038/ni861

T. Joshi, S. Rodriguez, V. Perovic, I. A. Cockburn, and S. Stäge, B7-H1 Blockade Increases Survival of Dysfunctional CD8+ T Cells and Confers Protection against Leishmania donovani Infections, PLoS Pathogens, vol.93, issue.5, 2009.
DOI : 10.1371/journal.ppat.1000431.s007

M. Ato, A. Maroof, S. Zubairi, H. Nakano, T. Kakiuchi et al., Loss of Dendritic Cell Migration and Impaired Resistance to Leishmania donovani Infection in Mice Deficient in CCL19 and CCL21, The Journal of Immunology, vol.176, issue.9, pp.5486-5493, 2006.
DOI : 10.4049/jimmunol.176.9.5486

C. R. E-n-g-w-e-r-d-a, M. A. , and S. E. C-o-t-t-e-r-e-l-le-ta-l, Ar o l ef o r tumor necrosis factor-? in remodeling the splenic marginal zone during Leishmania donovani infection, American Journal of Pathology, vol.161, issue.2, pp.429-437, 2002.

A. C. Stanley and C. R. Engwerda, Balancing immunity and pathology in visceral leishmaniasis, Immunology and Cell Biology, vol.42, issue.2, pp.138-147, 2007.
DOI : 10.1038/sj.icb7100011

P. M. Kaye, M. Svensson, and M. Ato, The immunopathology of experimental visceral leishmaniasis, Immunological Reviews, vol.146, issue.1, pp.239-253, 2004.
DOI : 10.1128/IAI.71.1.401-410.2003

C. R. Engwerda and P. M. Kaye, Organ-specific immune responses associated with infectious disease, Immunology Today, vol.21, issue.2, pp.73-78, 2000.
DOI : 10.1016/S0167-5699(99)01549-2

P. M. Gorak, C. R. Engwerda, and P. M. Kaye, Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection, European Journal of Immunology, vol.28, issue.02, pp.687-695, 1998.
DOI : 10.1002/(SICI)1521-4141(199802)28:02<687::AID-IMMU687>3.3.CO;2-E

S. Stager, A. Maroof, S. Zubairi, S. L. Sanos, M. Kopf et al., Distinct roles for IL-6 and IL-12p40 in mediating protection againstLeishmania donovani and the expansion of IL-10+ CD4+ T cells, European Journal of Immunology, vol.169, issue.7, pp.1764-1771, 2006.
DOI : 10.1002/eji.200635937

. Kaye, Destruction of follicular dendritic cells during chronic visceral leishmaniasis, Journal of Immunology, vol.158, issue.8, pp.3813-3821, 1997.

J. E. Dalton, A. Maroof, and B. M. Owens, Inhibition of receptor tyrosine kinases restores immunocompetence and improves immune-dependent chemotherapy against experimental leishmaniasis in mice, Journal of Clinical Investigation, vol.120, issue.4, pp.1204-1216, 2010.
DOI : 10.1172/JCI41281DS1

R. J. Greenwald, G. J. Freeman, and A. H. Sharpe, THE B7 FAMILY REVISITED, Annual Review of Immunology, vol.23, issue.1, pp.515-548, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115611

L. Chen, Co-inhibitory molecules of the B7???CD28 family in the control of T-cell immunity, Nature Reviews Immunology, vol.4, issue.5, pp.336-347, 2004.
DOI : 10.1038/nri1349

G. J. Freeman, A. J. Long, and Y. Iwai, Engagement of the Pd-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation, The Journal of Experimental Medicine, vol.142, issue.7, pp.1027-1034, 2000.
DOI : 10.1016/0008-8749(91)90091-O

H. Dong, S. E. Strome, and D. R. Salomao, Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion, Nature Medicine, vol.8, issue.8, pp.793-800, 2002.

J. Hernández-ruiz, N. Salaiza-suazo, and G. Carrada, CD8 Cells of Patients with Diffuse Cutaneous Leishmaniasis Display Functional Exhaustion: The Latter Is Reversed, In Vitro, by TLR2 Agonists, PLoS Neglected Tropical Diseases, vol.124, issue.5, p.871, 2010.
DOI : 10.1371/journal.pntd.0000871.g006

J. F. Grosso, M. V. Goldberg, and D. Getnet, Functionally Distinct LAG-3 and PD-1 Subsets on Activated and Chronically Stimulated CD8 T Cells, The Journal of Immunology, vol.182, issue.11, pp.6659-6669, 2009.
DOI : 10.4049/jimmunol.0804211

C. J. Workman, L. S. Cauley, I. J. Kim, M. A. Blackman, D. L. Woodland et al., Lymphocyte Activation Gene-3 (CD223) Regulates the Size of the Expanding T Cell Population Following Antigen Activation In Vivo, The Journal of Immunology, vol.172, issue.9, pp.5450-5455, 2004.
DOI : 10.4049/jimmunol.172.9.5450

C. J. Workman and D. A. Vignali, The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells, European Journal of Immunology, vol.33, issue.4, pp.970-979, 2003.
DOI : 10.1002/eji.200323382

C. Favali, D. Costa, and L. Afonso, Role of costimulatory molecules in immune response of patients with cutaneous leishmaniasis, Microbes and Infection, vol.7, issue.1, pp.86-92, 2005.
DOI : 10.1016/j.micinf.2004.09.015

M. L. M-u-r-p-h-y, C. R. E-n-g-w-e-r-d-a, and P. M. Kaye, B7-2 blockade enhances T cell responses to Leishmania donovani, Journal of Immunology, vol.159, issue.9, pp.4460-4466, 1997.

S. Zubairi, S. L. Sanos, S. Hill, and P. M. Kaye, Immunotherapy with OX40L-Fc or anti-CTLA-4 enhances local tissue responses and killing ofLeishmania donovani, European Journal of Immunology, vol.34, issue.5, pp.1433-1440, 2004.
DOI : 10.1002/eji.200324021

M. L. M-u-r-p-h-y, S. E. C-o-t-t-e-r-e-l-l, P. M. G-o-r-a-k, C. R. Engwerda, and P. M. Kaye, Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani, Journal of Immunology, vol.161, issue.8, pp.4153-4160, 1998.

H. W. Murray, C. M. Lu, and S. Mauze, Interleukin-10 (IL-10) in Experimental Visceral Leishmaniasis and IL-10 Receptor Blockade as Immunotherapy, Infection and Immunity, vol.70, issue.11, pp.6284-6293, 2002.
DOI : 10.1128/IAI.70.11.6284-6293.2002

M. L. Murphy, U. Wille, E. N. Villegas, C. A. Hunter, and J. P. Farrell, IL-10 mediates susceptibility to Leishmania donovani infection, European Journal of Immunology, vol.31, issue.10, pp.2848-2856, 2001.
DOI : 10.1002/1521-4141(2001010)31:10<2848::AID-IMMU2848>3.3.CO;2-K

Y. Belkaid, C. A. Piccirillo, S. Mendez, E. M. Shevach, and D. L. Sacks, CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity, Nature, vol.223, issue.6915, pp.502-507, 2002.
DOI : 10.1038/nature01152

S. Nylén and D. Sacks, Interleukin-10 and the pathogenesis of human visceral leishmaniasis, Trends in Immunology, vol.28, issue.9, pp.378-384, 2007.
DOI : 10.1016/j.it.2007.07.004

D. Ranatunga, C. M. Hedrich, and W. Fengying, A human IL10 BAC transgene reveals tissue-specific control of IL-10 expression and alters disease outcome, Proceedings of the National Academy of Sciences, vol.106, issue.40, pp.17123-17128, 2009.
DOI : 10.1073/pnas.0904955106

A. Maroof, L. Beattie, S. Zubairi, M. Svensson, S. Stager et al., Posttranscriptional Regulation of Il10 Gene Expression Allows Natural Killer Cells to Express Immunoregulatory Function, Immunity, vol.29, issue.2, pp.295-305, 2008.
DOI : 10.1016/j.immuni.2008.06.012

M. Svensson, A. Maroof, M. Ato, and P. M. Kaye, Stromal Cells Direct Local Differentiation of Regulatory Dendritic Cells, Immunity, vol.21, issue.6, pp.805-816, 2004.
DOI : 10.1016/j.immuni.2004.10.012

D. L. Sacks, P. A. Scott, R. Asofsky, and F. A. Sher, Cutaneous leishmaniasis in anti-IgM-treated mice: enhanced resistance due to functional depletion of a B cell-dependent T cell involved in the suppressor pathway, Journal of Immunology, vol.132, issue.4, pp.2072-2077, 1984.

E. Deak, A. Jayakumar, and K. W. Cho, Murine visceral leishmaniasis: IgM and polyclonal B-cell activation lead to disease exacerbation, European Journal of Immunology, vol.166, issue.5, pp.1355-1368, 2010.
DOI : 10.1002/eji.200939455

. Kaye, B cell-deficient mice are highly resistant to Leishmania donovani infection, but develop neutrophil-mediated tissue pathology, Journal of Immunology, vol.164, issue.7, pp.3681-3688, 2000.

C. Ronet, Y. Hauyon-la-torre, and M. Revaz-breton, Regulatory B Cells Shape the Development of Th2 Immune Responses in BALB/c Mice Infected with Leishmania major Through IL-10 Production, The Journal of Immunology, vol.184, issue.2, pp.886-894, 2010.
DOI : 10.4049/jimmunol.0901114

S. A. M-i-l-e-s, S. M. C-o-n-r-a-d, R. G. V-e-s, S. M. J-e-r-o-n-i-m-o, and D. M. Mosser, A role for IgG immune complexes during infection with the intracellular pathogen Leishmania, Journal of Experimental Medicine, vol.201, issue.5, pp.747-754, 2005.

M. M. Kane and D. M. Mosser, The Role of IL-10 in Promoting Disease Progression in Leishmaniasis, The Journal of Immunology, vol.166, issue.2, pp.1141-1147, 2001.
DOI : 10.4049/jimmunol.166.2.1141

F. Martin and J. F. Kearney, MARGINAL-ZONE B CELLS, Nature Reviews Immunology, vol.182, issue.5, pp.323-335, 2002.
DOI : 10.1016/S0167-5699(98)01308-5

T. Lopes-carvalho and J. F. Kearney, Development and selection of marginal zone B cells, Immunological Reviews, vol.170, issue.1, pp.192-205, 2004.
DOI : 10.1016/S1074-7613(01)00129-7

M. Balazs, F. Martin, T. Zhou, and J. F. Kearney, Blood Dendritic Cells Interact with Splenic Marginal Zone B Cells to Initiate T-Independent Immune Responses, Immunity, vol.17, issue.3, pp.341-352, 2002.
DOI : 10.1016/S1074-7613(02)00389-8

A. M. Oliver, F. Martin, and J. F. Kearney, IgM(high)CD21(high) lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells, Journal of Immunology, vol.162, issue.12, pp.7198-7207, 1999.

G. Cinamon, M. A. Zachariah, O. M. Lam, F. W. Foss, and J. G. Cyster, Follicular shuttling of marginal zone B cells facilitates antigen transport, Nature Immunology, vol.106, issue.1, pp.54-62, 2008.
DOI : 10.1126/science.1136736

E. C. Whipple, R. S. Shanahan, A. H. Ditto, R. P. Taylor, and M. A. Lindorfer, Analyses of the In Vivo Trafficking of Stoichiometric Doses of an Anti-Complement Receptor 1/2 Monoclonal Antibody Infused Intravenously in Mice, The Journal of Immunology, vol.173, issue.4, pp.2297-2306, 2004.
DOI : 10.4049/jimmunol.173.4.2297

K. S-u-z-u-k-i, I. G-r-i-g-o-r-o-v-a, T. G. P-h-a-n, L. M. N-dj, and . Cyster, Visualizing B cell capture of cognate antigen from follicular dendritic cells, Journal of Experimental Medicine, vol.206, issue.7, pp.1485-1493, 2009.

A. R. Ferguson and M. E. Corley, Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells, International Immunology, vol.16, issue.10, pp.1411-1422, 2004.
DOI : 10.1093/intimm/dxh142

M. E. Youd, A. R. Ferguson, and R. B. Corley, Synergistic roles of IgM and complement in antigen trapping and follicular localization, European Journal of Immunology, vol.32, issue.8, pp.2328-2337, 2002.
DOI : 10.1002/1521-4141(200208)32:8<2328::AID-IMMU2328>3.0.CO;2-T

K. Rajewsky, Clonal selection and learning in the antibody system, Nature, vol.381, issue.6585, pp.751-758, 1996.
DOI : 10.1038/381751a0

A. C. Ghose, J. P. Haldar, and S. C. , Serological investigations on Indian kala-azar, Clinical & Experimental Immunology, vol.40, issue.2, pp.318-326, 1980.

L. C. Pontes-de-carvalho, R. Badaro, and E. M. Carvalho, Nature and incidence of erythrocyte-bound IgG and some aspects of the physiopathogenesis of anaemia in American visceral leishmaniasis, Clinical & Experimental Immunology, vol.64, issue.3, pp.495-502, 1986.

H. Louzir, L. Belal-kacemi, A. Sassi, D. Laouini, R. B. Ismail et al., Natural autoantibodies, IgG antibodies to tetanus toxoid and CD5+ B cells in patients with Mediterranean visceral leishmaniasis, Clinical & Experimental Immunology, vol.89, issue.3, pp.479-484, 1994.
DOI : 10.1111/j.1365-2249.1994.tb07022.x

B. Galvao-castro, J. A. Ferreira, K. F. Marzochi, C. Ronet, H. Voigt et al., Polyclonal B cell activation, circulating immune complexes and autoimmunity in human American visceral leishmaniasis Leishmania majorspecific B cells are necessary for Th2 cell development and susceptibility to L. major LV39 in BALB/c mice, Clinical & Experimental Immunology Journal of Immunology, vol.56, issue.180 7, pp.58-66, 1984.

H. W. Murray, Tissue granuloma structure-function in experimental visceral leishmaniasis, International Journal of Experimental Pathology, vol.161, issue.5, pp.249-267, 2001.
DOI : 10.1046/j.1365-2613.2001.00199.x

N. , L. C. Trinchieri, and P. Scott, IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental Leishmaniasis, Journal of Immunology, vol.154, issue.10, pp.5320-5330, 1995.

H. W. Murray, Endogenous Interleukin???12 Regulates Acquired Resistance in Experimental Visceral Leishmaniasis, The Journal of Infectious Diseases, vol.175, issue.6, pp.1477-1479, 1997.
DOI : 10.1086/516482

H. W. Murray and J. Hariprashad, Interleukin 12 is effective treatment for an established systemic intracellular infection: experimental visceral leishmaniasis, Journal of Experimental Medicine, vol.181, issue.1, pp.387-391, 1995.
DOI : 10.1084/jem.181.1.387

H. W. M-u-r-r-a-y, K. E. S-q-u-i-r-e-s, and C. D. , M i r a l l e se ta l . , " A c q u i r e d resistance and granuloma formation in experimental visceral leishmaniasis. Differential T cell and lymphokine roles in initial versus established immunity, Journal of Immunology, vol.148, issue.6, pp.1858-1863, 1992.

J. S. Cervia, H. Rosen, and H. W. Murray, Effector role of blood monocytes in experimental visceral leishmaniasis, Infection and Immunity, vol.61, issue.4, pp.1330-1333, 1993.

B. J. Barnes, J. Richards, M. Mancl, S. Hanash, L. Beretta et al., Global and Distinct Targets of IRF-5 and IRF-7 during Innate Response to Viral Infection, Journal of Biological Chemistry, vol.279, issue.43, pp.45194-45207, 2004.
DOI : 10.1074/jbc.M400726200

B. J. Barnes, P. A. Moore, and P. M. Pitha, Virus-specific Activation of a Novel Interferon Regulatory Factor, IRF-5, Results in the Induction of Distinct Interferon ?? Genes, Journal of Biological Chemistry, vol.276, issue.26, pp.23382-23390, 2001.
DOI : 10.1074/jbc.M101216200

A. Paun, J. T. Reinert, and Z. Jiang, Functional Characterization of Murine Interferon Regulatory Factor 5 (IRF-5) and Its Role in the Innate Antiviral Response, Journal of Biological Chemistry, vol.283, issue.21, pp.14295-14308, 2008.
DOI : 10.1074/jbc.M800501200

H. Yanai, H. M. Chen, and T. Inuzuka, Role of IFN regulatory factor 5 transcription factor in antiviral immunity and tumor suppression, Proceedings of the National Academy of Sciences, vol.104, issue.9, pp.3402-3407, 2007.
DOI : 10.1073/pnas.0611559104

A. Takaoka, H. Yanai, and S. Kondo, Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors, Nature, vol.27, issue.7030, pp.243-249, 2005.
DOI : 10.1038/nature01850

A. Paun, R. Bankoti, T. Joshi, P. M. Pitha, and S. Stäger, Critical Role of IRF-5 in the Development of T helper 1 responses to Leishmania donovani infection, PLoS Pathogens, vol.165, issue.1, 2011.
DOI : 10.1371/journal.ppat.1001246.s003

T. Krausgruber, K. Blazek, and T. Smallie, IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses, Nature Immunology, vol.161, issue.3, pp.231-238, 2011.
DOI : 10.1084/jem.20030026

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, vol.117, issue.12, pp.958-969, 2008.
DOI : 10.1038/nri2448

D. C. Dale, L. Boxer, and W. C. Liles, The phagocytes: neutrophils and monocytes, Blood, vol.112, issue.4, pp.935-945, 2008.
DOI : 10.1182/blood-2007-12-077917

S. Thoma-u-szynski, S. Stenger, and O. , Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors, Science, vol.291, issue.5508, pp.1544-1547, 2001.
DOI : 10.1126/science.291.5508.1544

C. Bogdan, Nitric oxide and the immune response, Nature Immunology, vol.14, issue.11, pp.907-916, 2001.
DOI : 10.1038/ni1001-907

H. D. Brightbill, D. H. Libraty, and S. R. Krutzik, Host Defense Mechanisms Triggered by Microbial Lipoproteins Through Toll-Like Receptors, Science, vol.285, issue.5428, pp.732-736, 1999.
DOI : 10.1126/science.285.5428.732

A. Schoenemeyer, B. J. Barnes, and M. E. Mancl, The Interferon Regulatory Factor, IRF5, Is a Central Mediator of Toll-like Receptor 7 Signaling, Journal of Biological Chemistry, vol.280, issue.17, pp.17005-17012, 2005.
DOI : 10.1074/jbc.M412584200

S. Balaraman, P. Tewary, V. K. Singh, and R. Madhubala, Leishmania donovani induces interferon regulatory factor in murine macrophages: a host defense response, Biochemical and Biophysical Research Communications, vol.317, issue.2, pp.639-647, 2004.
DOI : 10.1016/j.bbrc.2004.03.097

R. Phillips, M. Svensson, and N. Aziz, Innate Killing of Leishmania donovani by Macrophages of the Splenic Marginal Zone Requires IRF-7, PLoS Pathogens, vol.39, issue.8, 2010.
DOI : 10.1371/journal.ppat.1000813.s014

C. Matte and A. Descoteaux, Leishmania donovani Amastigotes Impair Gamma Interferon-Induced STAT1?? Nuclear Translocation by Blocking the Interaction between STAT1?? and Importin-??5, Infection and Immunity, vol.78, issue.9, pp.3736-3743, 2010.
DOI : 10.1128/IAI.00046-10

URL : https://hal.archives-ouvertes.fr/pasteur-00819552