V. Uversky and A. Dunker, Understanding protein non-folding, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.6, pp.1231-1264, 2010.
DOI : 10.1016/j.bbapap.2010.01.017

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882790

H. Dyson, Expanding the proteome: disordered and alternatively folded proteins, Quarterly Reviews of Biophysics, vol.78, issue.04, pp.467-518, 2011.
DOI : 10.1016/j.bbrc.2009.02.151

P. Tompa, Unstructural biology coming of age, Current Opinion in Structural Biology, vol.21, issue.3, pp.419-425, 2011.
DOI : 10.1016/j.sbi.2011.03.012

R. Spolar, M. Record, and J. , Coupling of local folding to site-specific binding of proteins to DNA, Science, vol.263, issue.5148, pp.777-784, 1994.
DOI : 10.1126/science.8303294

P. Tompa and M. Fuxreiter, Fuzzy complexes: polymorphism and structural disorder in protein???protein interactions, Trends in Biochemical Sciences, vol.33, issue.1, pp.2-8, 2008.
DOI : 10.1016/j.tibs.2007.10.003

P. Wright and H. Dyson, Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm, Journal of Molecular Biology, vol.293, issue.2, pp.321-331, 1999.
DOI : 10.1006/jmbi.1999.3110

P. Tompa, C. Szász, and L. Buday, Structural disorder throws new light on moonlighting, Trends in Biochemical Sciences, vol.30, issue.9, pp.484-489, 2005.
DOI : 10.1016/j.tibs.2005.07.008

M. Wells, Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain, Proceedings of the National Academy of Sciences, vol.105, issue.15, pp.5762-5767, 2008.
DOI : 10.1073/pnas.0801353105

B. Shoemaker, J. Portman, and P. Wolynes, Speeding molecular recognition by using the folding funnel: The fly-casting mechanism, Proceedings of the National Academy of Sciences, vol.97, issue.16, pp.8868-8873, 2000.
DOI : 10.1073/pnas.160259697

E. Trizac, Y. Levy, and P. Wolynes, Capillarity theory for the fly-casting mechanism, Proceedings of the National Academy of Sciences, vol.107, issue.7, pp.2746-2750, 2010.
DOI : 10.1073/pnas.0914727107

URL : https://hal.archives-ouvertes.fr/hal-00460444

I. Radhakrishnan, Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions, Cell, vol.91, issue.6, pp.741-752, 1997.
DOI : 10.1016/S0092-8674(00)80463-8

N. Goto, T. Zor, M. Martinez-yamout, H. Dyson, and P. Wright, Cooperativity in Transcription Factor Binding to the Coactivator CREB-binding Protein (CBP). THE MIXED LINEAGE LEUKEMIA PROTEIN (MLL) ACTIVATION DOMAIN BINDS TO AN ALLOSTERIC SITE ON THE KIX DOMAIN, Journal of Biological Chemistry, vol.277, issue.45, pp.43168-43174, 2002.
DOI : 10.1074/jbc.M207660200

S. Gianni, A. Morrone, R. Giri, and M. Brunori, A folding-after-binding mechanism describes the recognition between the transactivation domain of c-Myb and the KIX domain of the CREB-binding protein, Biochemical and Biophysical Research Communications, vol.428, issue.2, pp.205-209, 2012.
DOI : 10.1016/j.bbrc.2012.09.112

URL : https://hal.archives-ouvertes.fr/pasteur-00960073

T. Zor, D. Guzman, R. Dyson, H. Wright, and P. , Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of c-Myb, Journal of Molecular Biology, vol.337, issue.3, pp.521-534, 2004.
DOI : 10.1016/j.jmb.2004.01.038

A. Fersht, A. Matouschek, and L. Serrano, The folding of an enzyme, Journal of Molecular Biology, vol.224, issue.3, pp.771-782, 1992.
DOI : 10.1016/0022-2836(92)90561-W

A. Matouschek, J. Kellis, J. Serrano, L. Fersht, and A. , Mapping the transition state and pathway of protein folding by protein engineering, Nature, vol.340, issue.6229, pp.122-126, 1989.
DOI : 10.1038/340122a0

L. Serrano, J. Neira, J. Sancho, and A. Fersht, Effect of alanine versus glycine in ??-helices on protein stability, Nature, vol.356, issue.6368, pp.453-455, 1992.
DOI : 10.1038/356453a0

J. Richardson, M. Lopez, and G. Makhatadze, Enthalpy of helix-coil transition: Missing link in rationalizing the thermodynamics of helix-forming propensities of the amino acid residues, Proceedings of the National Academy of Sciences, vol.102, issue.5, pp.1413-1418, 2005.
DOI : 10.1073/pnas.0408004102

J. Matthews and A. Fersht, Exploring the energy surface of protein folding by structure-reactivity relationships and engineered proteins: Observation of Hammond behavior for the gross structure of the transition state and anti-Hammond behavior for structural elements for unfolding/folding of barnase, Biochemistry, vol.34, issue.20, pp.6805-6814, 1995.
DOI : 10.1021/bi00020a027

E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Reactions with Ligands, 1971.

A. Fersht and S. Sato, ??-Value analysis and the nature of protein-folding transition states, Proceedings of the National Academy of Sciences, vol.101, issue.21, pp.7976-7981, 2004.
DOI : 10.1073/pnas.0402684101

S. Ozkan, I. Bahar, and K. Dill, Transition states and the meaning of Phi-values in protein folding kinetics, Nature Structural Biology, vol.8, issue.9, pp.765-769, 2001.
DOI : 10.1038/nsb0901-765

S. Gianni, Structural characterization of a misfolded intermediate populated during the folding process of a PDZ domain, Nature Structural & Molecular Biology, vol.30, issue.12, pp.1431-1437, 2010.
DOI : 10.1038/nsmb.1956

J. Leffler, Parameters for the Description of Transition States, Science, vol.117, issue.3039, pp.340-341, 1953.
DOI : 10.1126/science.117.3039.340

M. Toney and J. Kirsch, Direct Bronsted analysis of the restoration of activity to a mutant enzyme by exogenous amines, Science, vol.243, issue.4897, pp.1485-1488, 1989.
DOI : 10.1126/science.2538921

W. Eaton, E. Henry, and J. Hofrichter, Application of linear free energy relations to protein conformational changes: the quaternary structural change of hemoglobin., Proceedings of the National Academy of Sciences, vol.88, issue.10, pp.4472-4475, 1991.
DOI : 10.1073/pnas.88.10.4472

S. Edelstein and J. Changeux, Relationships between Structural Dynamics and Functional Kinetics in??Oligomeric Membrane Receptors, Biophysical Journal, vol.98, issue.10, pp.2045-2052, 2010.
DOI : 10.1016/j.bpj.2010.01.050

A. Fersht, Relationship of Leffler (Bronsted) ?? values and protein folding ?? values to position of transition-state structures on reaction coordinates, Proceedings of the National Academy of Sciences, vol.101, issue.40, pp.14338-14342, 2004.
DOI : 10.1073/pnas.0406091101

L. Itzhaki, D. Otzen, and A. Fersht, The Structure of the Transition State for Folding of Chymotrypsin Inhibitor 2 Analysed by Protein Engineering Methods: Evidence for a Nucleation-condensation Mechanism for Protein Folding, Journal of Molecular Biology, vol.254, issue.2, pp.260-288, 1995.
DOI : 10.1006/jmbi.1995.0616

A. Naganathan and V. Muñoz, Insights into protein folding mechanisms from large scale analysis of mutational effects, Proceedings of the National Academy of Sciences, vol.107, issue.19, pp.8611-8616, 2010.
DOI : 10.1073/pnas.1000988107

J. Dogan, X. Mu, A. Engström, and P. Jemth, The transition state structure for coupled binding and folding of disordered protein domains, Scientific Reports, vol.116, p.2076, 2013.
DOI : 10.1038/srep02076

D. Ferreiro, I. Sánchez, . De-prat, and G. Gay, Transition state for protein-DNA recognition, Proceedings of the National Academy of Sciences, vol.105, issue.31, pp.10797-10802, 2008.
DOI : 10.1073/pnas.0802383105

J. Gorman, Dynamic Basis for One-Dimensional DNA Scanning by the Mismatch Repair Complex Msh2-Msh6, Molecular Cell, vol.28, issue.3, pp.359-370, 2007.
DOI : 10.1016/j.molcel.2007.09.008