M. Buckingham, Skeletal muscle progenitor cells and the role of Pax genes, Comptes Rendus Biologies, vol.330, issue.6-7, pp.530-533, 2007.
DOI : 10.1016/j.crvi.2007.03.015

S. Carosio, M. G. Berardinelli, M. Aucello, and A. Musarò, Impact of ageing on muscle cell regeneration, Ageing Research Reviews, vol.10, issue.1, pp.35-42, 2011.
DOI : 10.1016/j.arr.2009.08.001

URL : https://hal.archives-ouvertes.fr/pasteur-00978647

B. Chazaud, C. Sonnet, P. Lafuste, G. Bassez, A. C. Rimaniol et al., Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth, The Journal of Cell Biology, vol.47, issue.5, pp.1133-1143, 2003.
DOI : 10.1016/S0002-9440(10)62537-0

I. M. Conboy and T. A. Rando, The Regulation of Notch Signaling Controls Satellite Cell Activation and Cell Fate Determination in Postnatal Myogenesis, Developmental Cell, vol.3, issue.3, pp.397-409, 2002.
DOI : 10.1016/S1534-5807(02)00254-X

B. M. Deasy, Z. Qu-peterson, J. S. Greenberger, and J. Huard, Mechanisms of Muscle Stem Cell Expansion with Cytokines, Stem Cells, vol.21, issue.1, pp.50-60, 2002.
DOI : 10.1634/stemcells.20-1-50

S. Decary, C. B. Hamida, V. Mouly, J. P. Barbet, F. Hentati et al., Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children, Neuromuscular Disorders, vol.10, issue.2, pp.113-120, 2000.
DOI : 10.1016/S0960-8966(99)00093-0

N. Dehne, U. Kerkweg, S. B. Flohé, B. Brüne, and J. Fandrey, Activation of Hypoxia-Inducible Factor 1 in Skeletal Muscle Cells After Exposure to Damaged Muscle Cell Debris, Shock, vol.35, issue.6, pp.632-638, 2011.
DOI : 10.1097/SHK.0b013e3182111f3d

G. Dobrowolny, M. Aucello, E. Rizzuto, S. Beccafico, C. Mammucari et al., Skeletal Muscle Is a Primary Target of SOD1G93A-Mediated Toxicity, Cell Metabolism, vol.8, issue.5, pp.425-436, 2008.
DOI : 10.1016/j.cmet.2008.09.002

C. Duan, H. Ren, and S. Gao, Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation, General and Comparative Endocrinology, vol.167, issue.3, pp.344-351, 2010.
DOI : 10.1016/j.ygcen.2010.04.009

L. Dupuis and A. Echaniz-laguna, Skeletal Muscle in Motor Neuron Diseases: Therapeutic Target and Delivery Route for Potential Treatments, Current Drug Targets, vol.11, issue.10, pp.1250-1261, 2010.
DOI : 10.2174/1389450111007011250

URL : https://hal.archives-ouvertes.fr/inserm-00497537

A. J. Engler, M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney et al., Myotubes differentiate optimally on substrates with tissue-like stiffness, The Journal of Cell Biology, vol.20, issue.6, pp.877-887, 2004.
DOI : 10.1152/ajpcell.00269.2001

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

J. C. Ferreira, A. V. Bacurau, F. S. Evangelista, M. A. Coelho, E. M. Oliveira et al., The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivityinduced heart failure in mice, Am. J. Physiol. Regul, vol.294, pp.26-32, 2008.

P. M. Gilbert, K. L. Havenstrite, K. E. Magnusson, A. Sacco, N. A. Leonardi et al., Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture, Science, vol.329, issue.5995, pp.1078-1081, 2010.
DOI : 10.1126/science.1191035

J. M. Gillis, Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse, Journal of Muscle Research and Cell Motility, vol.20, issue.7, pp.605-625, 1999.
DOI : 10.1023/A:1005545325254

M. D. Grounds, Two-tiered hypotheses for Duchenne muscular dystrophy, Cellular and Molecular Life Sciences, vol.65, issue.11, pp.1621-1625, 2008.
DOI : 10.1007/s00018-008-7574-8

V. Horsley, K. M. Jansen, S. T. Mills, and G. K. Pavlath, IL-4 Acts as a Myoblast Recruitment Factor during Mammalian Muscle Growth, Cell, vol.113, issue.4, pp.483-494, 2003.
DOI : 10.1016/S0092-8674(03)00319-2

D. Horst, S. Ustanina, C. Sergi, G. Mikuz, H. Juergens et al., Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis, The International Journal of Developmental Biology, vol.50, issue.1, pp.47-54, 2006.
DOI : 10.1387/ijdb.052111dh

J. Joseph-silverstein, S. A. Consigli, K. M. Lyser, V. Pault, and C. , Basic fibroblast growth factor in the chick embryo: immunolocalization to striated muscle cells and their precursors, The Journal of Cell Biology, vol.108, issue.6, pp.2459-2466, 1989.
DOI : 10.1083/jcb.108.6.2459

S. Kuang, S. B. Chargé, P. Seale, M. Huh, and M. A. Rudnicki, Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis, The Journal of Cell Biology, vol.126, issue.1, pp.103-113, 2006.
DOI : 10.1083/jcb.200312007

D. Kuraitis, P. Zhang, Y. Zhang, D. T. Padavan, K. Mcewan et al., A stromal cell-derived factor-1 releasing matrix enhances the progenitor cell response and blood vessel growth in ischaemic skeletal muscle, European Cells and Materials, vol.22, pp.109-123, 2011.
DOI : 10.22203/eCM.v022a09

D. Kuraitis, D. Ebadi, P. Zhang, E. Rizzuto, B. Vulesevic et al., Injected matrix stimulates myogenesis and regeneration of mouse skeletal muscle after ischaemic injury, European Cells and Materials, vol.24, pp.175-195, 2012.
DOI : 10.22203/eCM.v024a13

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, pp.402-408, 2001.

R. J. Miller, G. Banisadr, and B. J. Bhattacharyya, CXCR4 signaling in the regulation of stem cell migration and development, Journal of Neuroimmunology, vol.198, issue.1-2, pp.31-38, 2008.
DOI : 10.1016/j.jneuroim.2008.04.008

P. O. Mitchell and G. K. Pavlath, Skeletal muscle atrophy leads to loss and dysfunction of muscle precursor cells, AJP: Cell Physiology, vol.287, issue.6, pp.1753-1762, 2004.
DOI : 10.1152/ajpcell.00292.2004

A. Musarò and L. Barberi, Isolation and Culture of Mouse Satellite Cells, In Methods in Molecular Biology, vol.633, pp.101-111, 2010.
DOI : 10.1007/978-1-59745-019-5_8

K. Nagaraju, N. Raben, G. Merritt, L. Loeffler, K. Kirk et al., A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli, Clinical and Experimental Immunology, vol.143, issue.3, pp.407-414, 1998.
DOI : 10.1016/0165-5728(95)00045-4

P. F. Pradat, A. Barani, J. Wanschitz, O. Dubourg, A. Lombès et al., Abnormalities of satellite cells function in amyotrophic lateral sclerosis, Amyotrophic Lateral Sclerosis, vol.218, issue.4, pp.264-271, 2011.
DOI : 10.1093/brain/123.7.1339

URL : https://hal.archives-ouvertes.fr/hal-00744437

M. Z. Ratajczak, M. Majka, M. Kucia, J. Drukala, Z. Pietrzkowski et al., Expression of Functional CXCR4 by Muscle Satellite Cells and Secretion of SDF-1 by Muscle-Derived Fibroblasts is Associated with the Presence of Both Muscle Progenitors in Bone Marrow and Hematopoietic Stem/Progenitor Cells in Muscles, Stem Cells, vol.21, issue.3, pp.363-371, 2003.
DOI : 10.1634/stemcells.21-3-363

F. Relaix, D. Montarras, S. Zaffran, B. Gayraud-morel, D. Rocancourt et al., Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells, The Journal of Cell Biology, vol.48, issue.1, pp.91-102, 2006.
DOI : 10.1083/jcb.200312007

URL : https://hal.archives-ouvertes.fr/hal-00311188

V. Renault, G. Piron-hamelin, C. Forestier, S. Didonna, S. Decary et al., Skeletal muscle regeneration and the mitotic clock, Experimental Gerontology, vol.35, issue.6-7, pp.711-719, 2000.
DOI : 10.1016/S0531-5565(00)00151-0

D. C. Rio, M. Ares, G. J. Hannon, and T. W. Nilsen, Purification of RNA Using TRIzol (TRI Reagent), Cold Spring Harbor Protocols, vol.2010, issue.6, 2010.
DOI : 10.1101/pdb.prot5439

A. L. Serrano, B. Baeza-raja, E. Perdiguero, M. Jardí, and P. Muñoz-cánoves, Interleukin-6 Is an Essential Regulator of Satellite Cell-Mediated Skeletal Muscle Hypertrophy, Cell Metabolism, vol.7, issue.1, pp.33-44, 2008.
DOI : 10.1016/j.cmet.2007.11.011

S. M. Sheehan and R. E. Allen, Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor, Journal of Cellular Physiology, vol.194, issue.3, pp.499-506, 1999.
DOI : 10.1002/(SICI)1097-4652(199912)181:3<499::AID-JCP14>3.0.CO;2-1

S. M. Sheehan, R. Tatsumi, C. J. Temm-grove, and R. E. Allen, HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro, Muscle & Nerve, vol.32, issue.2, pp.239-245, 2000.
DOI : 10.1002/(SICI)1097-4598(200002)23:2<239::AID-MUS15>3.0.CO;2-U

P. K. Shireman, V. Contreras-shannon, O. Ochoa, B. P. Karia, J. E. Michalek et al., MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration, Journal of Leukocyte Biology, vol.81, issue.3, pp.775-785, 2007.
DOI : 10.1189/jlb.0506356

V. Straub and K. P. Campbell, Muscular dystrophies and the dystrophin???glycoprotein complex, Current Opinion in Neurology, vol.10, issue.2, pp.168-175, 1997.
DOI : 10.1097/00019052-199704000-00016

J. G. Tidball, Inflammatory processes in muscle injury and repair, AJP: Regulatory, Integrative and Comparative Physiology, vol.288, issue.2, pp.345-353, 2005.
DOI : 10.1152/ajpregu.00454.2004

N. J. Turner and S. F. Badylak, Regeneration of skeletal muscle, Cell and Tissue Research, vol.7, issue.Suppl 4, pp.759-774, 2012.
DOI : 10.1007/s00441-011-1185-7

R. Willmann, A. De-luca, M. Benatar, M. Grounds, J. Dubach et al., Enhancing translation: Guidelines for standard pre-clinical experiments in mdx mice, Neuromuscular Disorders, vol.22, issue.1, pp.43-49, 2012.
DOI : 10.1016/j.nmd.2011.04.012