J. J. Mcmanus, J. O. Ra?-dler, K. A. Dawson, G. Han, P. Ghosh et al., Observation of a rectangular columnar phase in a DNA?calcium?zwitterionic lipid complex Drug and gene delivery using gold nanoparticles Gold nanoparticle platforms as drug and biomacromolecule delivery systems, 122?127. (5) Stark, W. J. Nanoparticles in biological systems, pp.15966-15967, 2004.

G. Cagney, S. Linse, K. A. Dawson, M. Lundqvist, J. Stigler et al., Detailed identification of plasma proteins adsorbed on copolymer nanoparticles, Angew. Chem., Int. Ed, vol.46, pp.5754-5756, 2007.

K. A. Dawson, I. Lynch, K. A. Dawson, G. Elia, and I. Lynch, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts Protein?nanoparticle interactions, 40?47. (9) Monopoli, M. P.; Walczyk, pp.14265-14270, 2008.

B. Bombelli, F. Dawson, K. A. Monopoli, M. P. Baldelli-bombelli, F. Dawson et al., Physical?chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles Nanobiotechnology: nanoparticle coronas take shape Designing the nanoparticle?biomolecule interface for targeting and therapeutic delivery, 2525?2534. (10), pp.164-174, 2011.

E. Pfaller, T. Duschl, A. Oostingh, G. J. Puntes, and V. , Nanoparticle size and surface chemistry determines serum protein adsorption and macrophage uptake Time evolution of the nanoparticle protein corona, 2139?2147. (13) Casals, 2010.

S. Linse, M. Lundqvist, J. Stigler, T. Cedervall, T. Bergga?-rd et al., The evolution of the protein corona around nanoparticles: A test study, Modeling the time, pp.10949-10964, 2010.

M. A. Digman, E. Gratton, S. S. Sanchez, A. Lagana?, D. Pozzi et al., Protammine nanoparticles over lipoplexes Transfection efficiency boost of cholesterol-containing lipoplexes Analysis of plasma proteins adsorption onto DC-Chol?DOPE cationic liposomes by HPLC?CHIP coupled to a Q-TOF mass spectrometer Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol?DOPE/DNA lipoplexes in serum) Caracciolo, G. The protein corona effect for targeted drug delivery Nanoparticle surface charge mediates the cellular receptors used by protein?nanoparticle complexes Delivery of membrane impermeable cargo into CHO cells by peptide nanoparticles targeted by a protein corona, Factors determining the superior performance of Lipid 2335?2343. (18), pp.54-4160, 1818.

F. Cardarelli, A. Bifone, G. Bardi, F. Salomone, and A. Lagana?, Cancer cell targeting of lipid gene vectors by protein corona, Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, pp.354-357, 2012.

K. A. Dawson, C. D. Walkey, and W. C. Chan, What the cell " sees " in bionanoscience Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment, J. Am. Chem. Soc. Chem. Soc. Rev. C C, vol.132, pp.5761-5768, 2010.

D. Pozzi and A. Lagana?, Shotgun proteomics analytical approach for studying proteins adsorbed onto liposome surface, Anal. Bioanal

P. Giansanti, C. Marianecci, D. Pozzi, A. Lagana?, A. L. Capriotti et al., Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins Do plasma proteins distinguish between liposomes of varying charge density? High Density Lipoprotein Complexes as Delivery Vehicles for Anti-cancer Drugs Differential retention of ?-vitamin E is correlated with its transporter gene expression and growth inhibition efficacy in prostate cancer cells Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes The targeted intracellular delivery of cytochrome C protein to tumors using lipid-apolipoprotein nanoparticles Intravenously administered lecithin liposomes: A synthetic antiatherogenic lipid particle Effects of apolipoproteins A-IV and A-I on the uptake of phospholipid liposomes by hepatocytes, 463?471. (32), pp.141-146, 1984.

C. Koch-brandt, R. Alyautdin, and J. Kreuter, Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood?brain barrier Influence of the surface properties on nanoparticlemediated transport of drugs to the brain, J. Drug Target J. Nanosci. Nanotechnol, vol.10, issue.4, pp.317-325, 2002.

B. Dahlba?-ck, K. A. Dawson, S. Linse, T. Cedervall, V. I. Zannis et al., Complete highdensity lipoproteins in nanoparticle corona Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL, FEBS J. J. Mol. Med. C, vol.276, issue.84, pp.3372-3381, 2006.

K. A. Dawson, Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface, Nat. Nanotechnol, vol.8, pp.137-143, 2013.

W. Dawson, K. A. Åberg, and C. , Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency, J. Am

7. Caracciolo, G. Pozzi, D. Capriotti, A. L. Cavaliere, C. Foglia et al., Evolution of the Protein Corona of Lipid Gene Vectors as a Function of Plasma Concentration, Biomolecular coronas provide the biological identity of nanosized materials 15048?15053. (44) Ciasca, 2011.
DOI : 10.1021/la202912f

C. Rossi, P. De-sole, A. Bianconi, G. Ciasca, G. Campi et al., Transient state kinetic investigation of ferritin iron release, Appl. Phys. Lett, vol.2012, issue.10045, p.73703

P. Pernot, A. Tenenbaum, A. Bianconi, and G. Amiconi, Continuous thermal collapse of the intrinsically disordered protein tau is driven by its entropic flexible domain, Langmuir, vol.28, pp.13405-13410, 2012.

A. Colosimo, M. Mahmoudi, F. Quinian-pluck, M. P. Monopoli, S. Sheibani et al., Simulated point mutations in the A?-chain of human fibrinogen support a role of the ?C domain in the stabilization of fibrin gel A.; Lynch, I. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid ? protein fibrillation in solution, Pathophysiol. Haemost. Thromb. ACS Chem. Neurosci, vol.35, issue.29, pp.417-427, 2006.