A. Jemal, F. Bray, and M. Center, Global cancer statistics, CA: A Cancer Journal for Clinicians, vol.82, issue.19 suppl, pp.69-90, 2011.
DOI : 10.3322/caac.20107

L. Coussens and Z. Werb, Inflammation and cancer, Nature, vol.2, issue.6917, pp.860-867, 2002.
DOI : 10.1006/cyto.1996.0074

L. Dennis, C. Lynch, and J. Torner, Epidemiologic association between prostatitis and prostate cancer, Urology, vol.60, issue.1, pp.78-83, 2002.
DOI : 10.1016/S0090-4295(02)01637-0

P. Karakiewicz, S. Benayoun, and L. Begin, Chronic inflammation is negatively associated with prostate cancer and high-grade prostatic intraepithelial neoplasia on needle biopsy, International Journal of Clinical Practice, vol.52, issue.3, pp.425-455, 2007.
DOI : 10.1111/j.1742-1241.2006.00905.x

D. Silverio, F. Gentile, V. , D. Matteis, and A. , Distribution of Inflammation, Pre-Malignant Lesions, Incidental Carcinoma in Histologically Confirmed Benign Prostatic Hyperplasia: A Retrospective Analysis, European Urology, vol.43, issue.2, pp.164-75, 2003.
DOI : 10.1016/S0302-2838(02)00548-1

D. Nunzio, C. Kramer, G. Marberger, and M. , The Controversial Relationship Between Benign Prostatic Hyperplasia and Prostate Cancer: The Role of Inflammation, European Urology, vol.60, issue.1, pp.106-123, 2011.
DOI : 10.1016/j.eururo.2011.03.055

D. Silverio, F. Bosman, C. Salvatori, and M. , Combination Therapy With Rofecoxib and Finasteride in the Treatment of Men With Lower Urinary Tract Symptoms (LUTS) and Benign Prostatic Hyperplasia (BPH), The Journal of Urology, vol.175, issue.2, pp.72-80, 2005.
DOI : 10.1016/S0022-5347(05)00367-8

K. Heldwein, M. Liang, and T. Andresen, TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG, Journal of Leukocyte Biology, vol.74, issue.2, pp.277-86, 2003.
DOI : 10.1189/jlb.0103026

A. Alexandroff, A. Jackson, O. Donnell, and M. , BCG immunotherapy of bladder cancer: 20 years on, The Lancet, vol.353, issue.9165, pp.1689-94, 1999.
DOI : 10.1016/S0140-6736(98)07422-4

T. Chuang and R. Ulevitch, Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1518, issue.1-2, pp.157-61, 2001.
DOI : 10.1016/S0167-4781(00)00289-X

G. Barton and J. Kagan, A cell biological view of Toll-like receptor function: regulation through compartmentalization, Nature Reviews Immunology, vol.321, issue.8, pp.535-577, 2009.
DOI : 10.1038/nri2587

T. Kawai and S. Akira, The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nature Immunology, vol.1799, issue.5, pp.373-84, 2010.
DOI : 10.1126/science.1179050

A. Iwasaki and R. Medzhitov, Toll-like receptor control of the adaptive immune responses, Nature Immunology, vol.169, issue.10
DOI : 10.1126/science.1076071

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen Recognition and Innate Immunity, Cell, vol.124, issue.4, pp.783-801, 2006.
DOI : 10.1016/j.cell.2006.02.015

T. Kawai and S. Akira, Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity, Immunity, vol.34, issue.5, pp.637-50, 2011.
DOI : 10.1016/j.immuni.2011.05.006

D. Cook, D. Pisetsky, and D. Schwartz, Toll-like receptors in the pathogenesis of human disease, Nature Immunology, vol.171, issue.10, pp.975-984, 2004.
DOI : 10.1016/S1074-7613(03)00323-6

K. Iwami, T. Matsuguchi, and A. Masuda, Cutting Edge: Naturally Occurring Soluble Form of Mouse Toll-Like Receptor 4 Inhibits Lipopolysaccharide Signaling, The Journal of Immunology, vol.165, issue.12, pp.6682-6688, 2000.
DOI : 10.4049/jimmunol.165.12.6682

D. Boone, E. Turer, and E. Lee, The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses, Nature Immunology, vol.164, issue.10, pp.1052-60, 2004.
DOI : 10.1074/jbc.M103378200

F. Liew, D. Xu, and E. Brint, Negative regulation of Toll-like receptor-mediated immune responses, Nature Reviews Immunology, vol.168, issue.6, pp.446-58, 2005.
DOI : 10.1038/ni1198

E. Wall, J. Zavzavadjian, and M. Chang, Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105, Sci Signal, vol.2, p.28, 2009.

O. Levy, M. Coughlin, and B. Cronstein, The Adenosine System Selectively Inhibits TLR-Mediated TNF-?? Production in the Human Newborn, The Journal of Immunology, vol.177, issue.3, pp.1956-66, 2006.
DOI : 10.4049/jimmunol.177.3.1956

X. Chen, P. Splinter, O. Hara, and S. , Infection, Journal of Biological Chemistry, vol.282, issue.39, pp.28929-28967, 2007.
DOI : 10.1074/jbc.M702633200

URL : https://hal.archives-ouvertes.fr/pasteur-01179295

S. Quinn, O. Neill, and L. , A trio of microRNAs that control Toll-like receptor signalling, International Immunology, vol.23, issue.7, pp.421-426, 2011.
DOI : 10.1093/intimm/dxr034

O. Neill, L. Sheedy, F. Mccoy, and C. , MicroRNAs: the fine-tuners of Toll-like receptor signalling, Nature Reviews Immunology, vol.183, issue.3, pp.163-75, 2011.
DOI : 10.1038/nri2957

L. Xu, Z. Wen, and Y. Zhou, MicroRNA-7- regulated TLR9 signaling-enhanced growth and metastatic potential of human lung cancer cells by altering the phosphoinositide-3- kinase

M. Fabbri, A. Paone, and F. Calore, MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response, Proceedings of the National Academy of Sciences, vol.109, issue.31, pp.2110-2116, 2012.
DOI : 10.1073/pnas.1209414109

G. Sims, D. Rowe, and S. Rietdijk, HMGB1 and RAGE in Inflammation and Cancer, Annual Review of Immunology, vol.28, issue.1, pp.367-88, 2010.
DOI : 10.1146/annurev.immunol.021908.132603

S. Gallucci, M. Lolkema, and P. Matzinger, Natural adjuvants: Endogenous activators of dendritic cells, Nature Medicine, vol.81, issue.11, pp.1249-55, 1999.
DOI : 10.1146/annurev.immunol.2.1.461

L. Apetoh, F. Ghiringhelli, and A. Tesniere, Toll-like receptor 4???dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nature Medicine, vol.289, issue.9, pp.1050-1059, 2007.
DOI : 10.1038/nm1622

URL : https://hal.archives-ouvertes.fr/hal-00316924

L. Zitvogel, O. Kepp, and G. Kroemer, Decoding Cell Death Signals in Inflammation and Immunity, Cell, vol.140, issue.6, pp.798-804, 2010.
DOI : 10.1016/j.cell.2010.02.015

S. Basu and P. Srivastava, Calreticulin, a Peptide-binding Chaperone of the Endoplasmic Reticulum, Elicits Tumor- and Peptide-specific Immunity, The Journal of Experimental Medicine, vol.3, issue.5, pp.797-802, 1999.
DOI : 10.1016/S0960-9822(98)70278-7

J. Fucikova, P. Kralikova, and A. Fialova, Human Tumor Cells Killed by Anthracyclines Induce a Tumor-Specific Immune Response, Cancer Research, vol.71, issue.14, pp.4821-4854, 2011.
DOI : 10.1158/0008-5472.CAN-11-0950

L. Apetoh, A. Tesniere, and F. Ghiringhelli, Molecular Interactions between Dying Tumor Cells and the Innate Immune System Determine the Efficacy of Conventional Anticancer Therapies, Cancer Research, vol.68, issue.11, pp.4026-4056, 2008.
DOI : 10.1158/0008-5472.CAN-08-0427

A. Quayle, The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells, Journal of Reproductive Immunology, vol.57, issue.1-2, pp.61-79, 2002.
DOI : 10.1016/S0165-0378(02)00019-0

S. Sutcliffe and E. Platz, Inflammation and prostate cancer: A focus on infections, Current Urology Reports, vol.2, issue.3, pp.243-252, 2008.
DOI : 10.1007/s11934-008-0042-z

J. Mackern-oberti, M. Maccioni, and C. Cuffini, Susceptibility of Prostate Epithelial Cells to Chlamydia muridarum Infection and Their Role in Innate Immunity by Recruitment of Intracellular Toll-Like Receptors 4 and 2 and MyD88 to the Inclusion, Infection and Immunity, vol.74, issue.12, pp.6973-81, 2006.
DOI : 10.1128/IAI.00593-06

G. Gatti, V. Rivero, and R. Motrich, Prostate epithelial cells can act as early sensors of infection by up-regulating TLR4 expression and proinflammatory mediators upon LPS stimulation, Journal of Leukocyte Biology, vol.79, issue.5, pp.989-98, 2006.
DOI : 10.1189/jlb.1005597

J. Mackern-oberti, M. Breser, and N. Nunez, Chemokine response induced by Chlamydia trachomatis in prostate derived CD45+ and CD45- cells, Reproduction, vol.142, issue.3, pp.427-464, 2011.
DOI : 10.1530/REP-11-0163

C. Brede and D. Shoskes, The etiology and management of acute prostatitis, Nature Reviews Urology, vol.147, issue.4, pp.207-219, 2011.
DOI : 10.1038/nrurol.2011.22

M. Najar, C. Saldanha, and K. Banday, Approach to urinary tract infections, Indian Journal of Nephrology, vol.19, issue.4, pp.129-168, 2009.
DOI : 10.4103/0971-4065.59333

S. Rakoff-nahoum and R. Medzhitov, Toll-like receptors and cancer, Nature Reviews Cancer, vol.5, issue.1, pp.57-63, 2009.
DOI : 10.1182/blood-2007-05-088682

J. Konig, T. Senge, and E. Allhoff, Analysis of the inflammatory network in benign prostate hyperplasia and prostate cancer, The Prostate, vol.164, issue.2, pp.121-130, 2004.
DOI : 10.1002/pros.10317

S. Zheng, K. Augustsson-balter, and B. Chang, Sequence Variants of Toll-Like Receptor 4 Are Associated with Prostate Cancer Risk: Results from the CAncer Prostate in Sweden Study, Cancer Research, vol.64, issue.8, pp.2918-2940, 2004.
DOI : 10.1158/0008-5472.CAN-03-3280

S. Gonzalez-reyes, J. Fernandez, and L. Gonzalez, Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence, Cancer Immunology, Immunotherapy, vol.164, issue.18, pp.217-243, 2011.
DOI : 10.1007/s00262-010-0931-0

W. Schulz, A. A. Jung, and V. , Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer, Molecular Cancer, vol.6, issue.1, p.14, 2007.
DOI : 10.1186/1476-4598-6-14

M. Vaisanen, T. Vaisanen, and A. Jukkola-vuorinen, Expression of toll-like receptor-9 is increased in poorly differentiated prostate tumors, The Prostate, vol.70, issue.9-10, pp.817-841, 2010.
DOI : 10.1002/pros.21115

E. El-omar, M. Ng, and G. Hold, Polymorphisms in Toll-like receptor genes and risk of cancer, Oncogene, vol.97, issue.2, pp.244-52, 2008.
DOI : 10.1158/1055-9965.EPI-05-0874

A. Kutikhin and A. Yuzhalin, Are Toll-like receptor gene polymorphisms associated with prostate cancer?, Cancer Manag Res, vol.4, pp.23-32, 2012.

R. Mandal, G. George, and R. Mittal, Association of Toll-like receptor (TLR) 2, 3 and 9 genes polymorphism with prostate cancer risk in North Indian population, Molecular Biology Reports, vol.16, issue.7, pp.7263-7272, 2012.
DOI : 10.1007/s11033-012-1556-5

R. Chen, A. Alvero, and D. Silasi, Cancers take their Toll???the function and regulation of Toll-like receptors in cancer cells, Oncogene, vol.17, issue.2, pp.225-258, 2008.
DOI : 10.1126/science.1094351

K. Takeyama, H. Mitsuzawa, and T. Shimizu, Prostate cell lines secrete IL-8 in response tomycoplasma hominis through Toll-like receptor 2-mediated mechanism, The Prostate, vol.60, issue.4, pp.386-91, 2006.
DOI : 10.1002/pros.20358

V. Andreani, G. Gatti, and L. Simonella, Activation of Toll-like Receptor 4 on Tumor Cells In vitro Inhibits Subsequent Tumor Growth In vivo, Cancer Research, vol.67, issue.21, pp.10519-10546, 2007.
DOI : 10.1158/0008-5472.CAN-07-0079

D. Hua, M. Liu, and Z. Cheng, Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity, Molecular Immunology, vol.46, issue.15
DOI : 10.1016/j.molimm.2009.06.016

J. Riddell, W. Bshara, and M. Moser, Peroxiredoxin 1 Controls Prostate Cancer Growth through Toll-Like Receptor 4-Dependent Regulation of Tumor Vasculature, Cancer Research, vol.71, issue.5, pp.1637-1683, 2012.
DOI : 10.1158/0008-5472.CAN-10-3674

J. Ilvesaro, M. Merrell, and T. Swain, Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro, The Prostate, vol.52, issue.7, pp.774-81, 2007.
DOI : 10.1002/pros.20562

S. Kundu, C. Lee, and B. Billips, The toll-like receptor pathway: A novel mechanism of infection-induced carcinogenesis of prostate epithelial cells, The Prostate, vol.26, issue.2, pp.223-232, 2008.
DOI : 10.1002/pros.20710

L. Galluzzi, E. Vacchelli, and A. Eggermont, Trial Watch, OncoImmunology, vol.101, issue.5, pp.699-716, 2012.
DOI : 10.1038/nm0703-831

E. Hennessy, A. Parker, O. Neill, and L. , Targeting Toll-like receptors: emerging therapeutics?, Nature Reviews Drug Discovery, vol.11, issue.4, pp.293-307, 2010.
DOI : 10.1038/nrd3203

W. Coley, THE TREATMENT OF MALIGNAT TUMORS BY REPEATED INOCULATIONS OF ERYSIPELAS, The American Journal of the Medical Sciences, vol.105, issue.5, pp.487-510, 1893.
DOI : 10.1097/00000441-189305000-00001

S. Rakshit, M. Ponnusamy, and S. Papanna, Immunotherapeutic efficacy of Mycobacterium indicus pranii in eliciting anti-tumor T cell responses: Critical roles of IFN??, International Journal of Cancer, vol.54, issue.4
DOI : 10.1002/ijc.26099

D. Agostini, C. Pica, F. Febbraro, and G. , Antitumour effect of OM-174 and Cyclophosphamide on murine B16 melanoma in different experimental conditions, International Immunopharmacology, vol.5, issue.7-8, pp.1205-1217, 2005.
DOI : 10.1016/j.intimp.2005.02.013

J. Lacour, F. Lacour, and A. Spira, ADJUVANT TREATMENT WITH POLYADENYLIC-POLYURIDYLIC ACID (POLYA.POLYU) IN OPERABLE BREAST CANCER, The Lancet, vol.316, issue.8187, pp.161-165, 1980.
DOI : 10.1016/S0140-6736(80)90057-4

J. Lacour, A. Laplanche, and M. Malafosse, Polyadenylic-polyuridylic acid as an adjuvant in resectable colorectal carcinoma: a 6 1/2 year follow-up analysis of a multicentric double blind randomized trial, Eur J Surg Oncol, vol.18, pp.599-604, 1992.

B. Salaun, L. Zitvogel, and C. Asselin-paturel, TLR3 as a Biomarker for the Therapeutic Efficacy of Double-stranded RNA in Breast Cancer, Cancer Research, vol.71, issue.5, pp.1607-1621, 2011.
DOI : 10.1158/0008-5472.CAN-10-3490

URL : https://hal.archives-ouvertes.fr/hal-00608171

L. Sfondrini, A. Rossini, and D. Besusso, Antitumor Activity of the TLR-5 Ligand Flagellin in Mouse Models of Cancer, The Journal of Immunology, vol.176, issue.11, pp.6624-6654, 2006.
DOI : 10.4049/jimmunol.176.11.6624

L. Burdelya, V. Krivokrysenko, and T. Tallant, An Agonist of Toll-Like Receptor 5 Has Radioprotective Activity in Mouse and Primate Models, Science, vol.320, issue.5873, pp.226-256, 2008.
DOI : 10.1126/science.1154986

M. Schon and M. Schon, TLR7 and TLR8 as targets in cancer therapy, Oncogene, vol.14, issue.2, pp.190-199, 2008.
DOI : 10.1016/j.vaccine.2003.10.051

J. Geisse, I. Caro, and J. Lindholm, Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies, Journal of the American Academy of Dermatology, vol.50, issue.5, pp.722-755, 2004.
DOI : 10.1016/j.jaad.2003.11.066

S. Adams, L. Kozhaya, and F. Martiniuk, Topical TLR7 Agonist Imiquimod Can Induce Immune-Mediated Rejection of Skin Metastases in Patients with Breast Cancer, Clinical Cancer Research, vol.18, issue.24, pp.6748-57, 2012.
DOI : 10.1158/1078-0432.CCR-12-1149

R. Dummer, A. Hauschild, and J. Becker, An Exploratory Study of Systemic Administration of the Toll-like Receptor-7 Agonist 852A in Patients with Refractory Metastatic Melanoma, Clinical Cancer Research, vol.14, issue.3, pp.856-64, 2008.
DOI : 10.1158/1078-0432.CCR-07-1938

A. Krieg, Toll-like receptor 9 (TLR9) agonists in the treatment of cancer, Oncogene, vol.89, issue.2, pp.161-168, 2008.
DOI : 10.1182/blood-2004-03-1190

C. Manegold, D. Gravenor, and D. Woytowitz, Randomized Phase II Trial of a Toll-Like Receptor 9 Agonist Oligodeoxynucleotide, PF-3512676, in Combination With First-Line Taxane Plus Platinum Chemotherapy for Advanced-Stage Non???Small-Cell Lung Cancer, Journal of Clinical Oncology, vol.26, issue.24
DOI : 10.1200/JCO.2007.12.5807

V. Hirsh, L. Paz-ares, and M. Boyer, Randomized Phase III Trial of Paclitaxel/Carboplatin With or Without PF-3512676 (Toll-Like Receptor 9 Agonist) As First-Line Treatment for Advanced Non???Small-Cell Lung Cancer, Journal of Clinical Oncology, vol.29, issue.19, pp.2667-74, 2011.
DOI : 10.1200/JCO.2010.32.8971

J. Brody, W. Ai, and D. Czerwinski, In Situ Vaccination With a TLR9 Agonist Induces Systemic Lymphoma Regression: A Phase I/II Study, Journal of Clinical Oncology, vol.28, issue.28, pp.4324-4356, 2010.
DOI : 10.1200/JCO.2010.28.9793

M. Pashenkov, G. Goess, and C. Wagner, Phase II Trial of a Toll-Like Receptor 9???Activating Oligonucleotide in Patients With Metastatic Melanoma, Journal of Clinical Oncology, vol.24, issue.36, pp.5716-5740, 2006.
DOI : 10.1200/JCO.2006.07.9129

M. Shen and C. Abate-shen, Molecular genetics of prostate cancer: new prospects for old challenges, Genes & Development, vol.24, issue.18, pp.1967-2000, 2010.
DOI : 10.1101/gad.1965810

B. Jasani, H. Navabi, and M. Adams, Ampligen: A potential toll-like 3 receptor adjuvant for immunotherapy of cancer, Vaccine, vol.27, issue.25-26, pp.3401-3405, 2009.
DOI : 10.1016/j.vaccine.2009.01.071

A. Paone, D. Starace, and R. Galli, Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC-??-dependent mechanism, Carcinogenesis, vol.29, issue.7, pp.1334-1376, 2008.
DOI : 10.1093/carcin/bgn149

A. Paone, R. Galli, and C. Gabellini, Toll-like receptor 3 regulates angiogenesis and