U. Acharya and J. K. Acharya, Enzymes of Sphingolipid metabolism in Drosophila melanogaster, CMLS Cellular and Molecular Life Sciences, vol.62, issue.2, pp.128-142, 2005.
DOI : 10.1007/s00018-004-4254-1

J. K. Acharya, U. Dasgupta, S. S. Rawat, C. Yuan, P. D. Sanxaridis et al., Cell-Nonautonomous Function of Ceramidase in Photoreceptor Homeostasis, Neuron, vol.57, issue.1, pp.69-79, 2008.
DOI : 10.1016/j.neuron.2007.10.041

N. Bartke and Y. A. Hannun, Bioactive sphingolipids: metabolism and function, The Journal of Lipid Research, vol.50, issue.Supplement, pp.91-96, 2009.
DOI : 10.1194/jlr.R800080-JLR200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674734

R. Bauer, Towards understanding regulation of energy homeostasis by ceramide synthases. Results Probl, Cell Differ, vol.52, pp.175-181, 2010.

G. W. Becker and R. L. Lester, Biosynthesis of phosphoinositol-containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae, J. Bacteriol, vol.142, pp.747-754, 1980.

K. Bejaoui, Y. Uchida, S. Yasuda, M. Ho, M. Nishijima et al., Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis, Journal of Clinical Investigation, vol.110, issue.9, pp.1301-1308, 2002.
DOI : 10.1172/JCI0216450

A. Bithell, S. E. Finch, M. F. Hornby, W. , and B. P. , Fibroblast Growth Factor 2 Maintains the Neurogenic Capacity of Embryonic Neural Progenitor Cells In Vitro but Changes Their Neuronal Subtype Specification, Stem Cells, vol.83, issue.6, pp.1565-1574, 2008.
DOI : 10.1634/stemcells.2007-0832

E. G. Bligh and W. J. Dyer, A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION, Canadian Journal of Biochemistry and Physiology, vol.37, issue.8, pp.911-917, 1959.
DOI : 10.1139/o59-099

D. K. Breslow, S. R. Collins, B. Bodenmiller, R. Aebersold, K. Simons et al., Orm family proteins mediate sphingolipid homeostasis, Nature, vol.23, issue.7284, pp.1048-1053, 2010.
DOI : 10.1038/nature08787

J. A. Brill, G. R. Hime, M. Scharer-schuksz, and M. T. Fuller, A phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis, Development, vol.127, pp.3855-3864, 2000.

M. Carvalho, D. Schwudke, J. L. Sampaio, W. Palm, I. Riezman et al., Survival strategies of a sterol auxotroph, Development, vol.137, issue.21, pp.3675-3685, 2010.
DOI : 10.1242/dev.044560

M. Carvalho, J. L. Sampaio, W. Palm, M. Brankatschk, S. Eaton et al., Effects of diet and development on the Drosophila lipidome, Molecular Systems Biology, vol.13, p.600, 2012.
DOI : 10.1038/msb.2012.29

D. H. Castrillon, P. Gö-nczy, S. Alexander, R. Rawson, C. G. Eberhart et al., Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis, Genetics, vol.135, pp.489-505, 1993.

B. Chen, T. Chu, E. Harms, J. P. Gergen, and S. Strickland, Mapping of Drosophila mutations using site-specific male recombination, Genetics, vol.149, pp.157-163, 1998.

Y. Chen, Y. Liu, M. C. Sullards, A. H. Merrill, and . Jr, An Introduction to Sphingolipid Metabolism and Analysis by New Technologies, NeuroMolecular Medicine, vol.284, issue.Suppl, pp.306-319, 2010.
DOI : 10.1007/s12017-010-8132-8

Y. W. Chen, J. W. Pedersen, H. H. Wandall, S. B. Levery, S. Pizette et al., Glycosphingolipids with extended sugar chain have specialized functions in development and behavior of Drosophila, Developmental Biology, vol.306, issue.2, pp.736-749, 2007.
DOI : 10.1016/j.ydbio.2007.04.013

F. X. Contreras, A. M. Ernst, P. Haberkant, P. Bjö-rkholm, E. Lindahl et al., Molecular recognition of a single sphingolipid species by a protein???s transmembrane domain, Nature, vol.112, issue.7382, pp.525-529, 2012.
DOI : 10.1038/nature10742

U. Dasgupta, T. Bamba, S. Chiantia, P. Karim, A. N. Tayoun et al., Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction, Proc. Natl. Acad. Sci. USA, 2009.
DOI : 10.1073/pnas.0911028106

J. L. Dawkins, D. J. Hulme, S. B. Brahmbhatt, M. Auer-grumbach, and G. A. Nicholson, Mutations in SPTLC1, encoding serine palmitoyltransferase , long chain base subunit-1, cause hereditary sensory neuropathy type I, Nature Genetics, vol.27, issue.3, pp.309-312, 2001.
DOI : 10.1038/85879

E. A. Dennis, R. A. Deems, R. Harkewicz, O. Quehenberger, H. A. Brown et al., A Mouse Macrophage Lipidome, Journal of Biological Chemistry, vol.285, issue.51, pp.39976-39985, 2010.
DOI : 10.1074/jbc.M110.182915

I. Y. Dobrosotskaya, A. C. Seegmiller, M. S. Brown, J. L. Goldstein, and R. B. And-rawson, Regulation of SREBP Processing and Membrane Lipid Production by Phospholipids in Drosophila, Science, vol.296, issue.5569, pp.879-883, 2002.
DOI : 10.1126/science.1071124

N. Dyer, E. Rebollo, P. Domínguez, N. Elkhatib, P. Chavrier et al., Spermatocyte cytokinesis requires rapid membrane addition mediated by ARF6 on central spindle recycling endosomes, Development, vol.134, issue.24, pp.4437-4447, 2007.
DOI : 10.1242/dev.010983

C. S. Ejsing, J. L. Sampaio, V. Surendranath, E. Duchoslav, K. Ekroos et al., Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry, Proc. Natl. Acad. Sci. USA, pp.2136-2141, 2009.
DOI : 10.1073/pnas.0811700106

R. M. Farkas, M. G. Giansanti, M. Gatti, and M. T. Fuller, The Drosophila Cog5 Homologue Is Required for Cytokinesis, Cell Elongation, and Assembly of Specialized Golgi Architecture during Spermatogenesis, Molecular Biology of the Cell, vol.14, issue.1, pp.190-200, 2003.
DOI : 10.1091/mbc.E02-06-0343

S. Fujii, A. Toyama, and H. Amrein, A Male-Specific Fatty Acid ??-Hydroxylase, SXE1, Is Necessary for Efficient Male Mating in Drosophila melanogaster, Genetics, vol.180, issue.1, pp.179-190, 2008.
DOI : 10.1534/genetics.108.089177

H. Fyrst, D. R. Herr, G. L. Harris, S. , and J. D. , Characterization of free endogenous C14 and C16 sphingoid bases from Drosophila melanogaster, The Journal of Lipid Research, vol.45, issue.1, pp.54-62, 2004.
DOI : 10.1194/jlr.M300005-JLR200

H. Fyrst, X. Zhang, D. R. Herr, H. S. Byun, R. Bittman et al., Identification and characterization by electrospray mass spectrometry of endogenous Drosophila sphingadienes, The Journal of Lipid Research, vol.49, issue.3, pp.597-606, 2008.
DOI : 10.1194/jlr.M700414-JLR200

K. Gable, S. D. Gupta, G. Han, S. Niranjanakumari, J. M. Harmon et al., A Disease-causing Mutation in the Active Site of Serine Palmitoyltransferase Causes Catalytic Promiscuity, Journal of Biological Chemistry, vol.285, issue.30, pp.22846-22852, 2010.
DOI : 10.1074/jbc.M110.122259

S. Gamo, A. Kawabe, H. Kohara, H. Yamaguchi, Y. Tanaka et al., Fast atom bombardment tandem mass spectrometric analysis of phospholipids in Drosophila melanogaster, Journal of Mass Spectrometry, vol.34, issue.6, pp.590-600, 1999.
DOI : 10.1002/(SICI)1096-9888(199906)34:6<590::AID-JMS810>3.3.CO;2-#

M. K. Gatt and D. M. Glover, The Drosophila phosphatidylinositol transfer protein encoded by vibrator is essential to maintain cleavage-furrow ingression in cytokinesis, Journal of Cell Science, vol.119, issue.11, pp.2225-2235, 2006.
DOI : 10.1242/jcs.02933

M. G. Giansanti, R. M. Farkas, S. Bonaccorsi, D. L. Lindsley, B. T. Wakimoto et al., Genetic Dissection of Meiotic Cytokinesis in Drosophila Males, Molecular Biology of the Cell, vol.15, issue.5, pp.2509-2522, 2004.
DOI : 10.1091/mbc.E03-08-0603

M. G. Giansanti, S. Bonaccorsi, R. Kurek, R. M. Farkas, P. Dimitri et al., The Class I PITP Giotto Is Required for Drosophila Cytokinesis, Current Biology, vol.16, issue.2, pp.195-201, 2006.
DOI : 10.1016/j.cub.2005.12.011

M. G. Giansanti, G. Belloni, and M. Gatti, Rab11 Is Required for Membrane Trafficking and Actomyosin Ring Constriction in Meiotic Cytokinesis of Drosophila Males, Molecular Biology of the Cell, vol.18, issue.12, pp.5034-5047, 2007.
DOI : 10.1091/mbc.E07-05-0415

J. L. Goldstein, R. A. Debose-boyd, and M. S. Brown, Protein Sensors for Membrane Sterols, Cell, vol.124, issue.1, pp.35-46, 2006.
DOI : 10.1016/j.cell.2005.12.022

B. R. Graveley, A. N. Brooks, J. W. Carlson, M. O. Duff, J. M. Landolin et al., The developmental transcriptome of Drosophila melanogaster, Nature, vol.31, issue.7339, pp.473-479, 2011.
DOI : 10.1038/nature09715

X. L. Guan, C. M. Souza, H. Pichler, G. Dewhurst, O. Schaad et al., Functional Interactions between Sphingolipids and Sterols in Biological Membranes Regulating Cell Physiology, Molecular Biology of the Cell, vol.20, issue.7, pp.2083-2095, 2009.
DOI : 10.1091/mbc.E08-11-1126

H. Hama, Fatty acid 2-Hydroxylation in mammalian sphingolipid biology, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1801, issue.4, pp.405-414, 2010.
DOI : 10.1016/j.bbalip.2009.12.004

L. A. Hammad, B. S. Cooper, N. P. Fisher, K. L. Montooth, and J. A. Karty, Profiling and quantification of Drosophila melanogaster lipids using liquid chromatography/mass spectrometry, Rapid Communications in Mass Spectrometry, vol.24, issue.19, pp.2959-2968, 2011.
DOI : 10.1002/rcm.5187

G. Han, S. D. Gupta, K. Gable, S. Niranjanakumari, P. Moitra et al., Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities, Proc. Natl. Acad. Sci. USA, pp.8186-8191, 2009.
DOI : 10.1073/pnas.0811269106

X. Han and R. W. Gross, Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes, Expert Review of Proteomics, vol.2, issue.2, pp.253-264, 2005.
DOI : 10.1586/14789450.2.2.253

J. T. Hannich, K. Umebayashi, and H. Riezman, Distribution and Functions of Sterols and Sphingolipids, Cold Spring Harbor Perspectives in Biology, vol.3, issue.5, 2011.
DOI : 10.1101/cshperspect.a004762

Y. A. Hannun and L. M. Obeid, Many Ceramides, Journal of Biological Chemistry, vol.286, issue.32, pp.27855-27862, 2011.
DOI : 10.1074/jbc.R111.254359

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151029

H. E. Jones, J. L. Harwood, I. D. Bowen, and G. Griffiths, Lipid composition of subcellular membranes from larvae and prepupae ofDrosophila melanogaster, Lipids, vol.12, issue.12, pp.984-987, 1992.
DOI : 10.1007/BF02535576

R. Kraut, Roles of sphingolipids in Drosophila development and disease, Journal of Neurochemistry, vol.21, issue.10, pp.764-778, 2011.
DOI : 10.1111/j.1471-4159.2010.07022.x

D. Lingwood, B. Binnington, T. Ró-g, I. Vattulainen, M. Grzybek et al., Cholesterol modulates glycolipid conformation and receptor activity, Nature Chemical Biology, vol.62, issue.5, pp.260-262, 2011.
DOI : 10.1371/journal.pone.0009079

B. M. Lundé-n, H. Lö-fgren, and I. Pascher, Accommodation of hydroxyl groups and their hydrogen bond system in a hydrocarbon matrix, Chemistry and Physics of Lipids, vol.20, issue.4, pp.263-271, 1977.
DOI : 10.1016/0009-3084(77)90067-6

A. H. Merrill and . Jr, Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics, Chemical Reviews, vol.111, issue.10, pp.6387-6422, 2011.
DOI : 10.1021/cr2002917

A. A. Momin, H. Park, J. C. Allegood, M. Leipelt, S. L. Kelly et al., Characterization of Mutant Serine Palmitoyltransferase 1 in LY-B Cells, Lipids, vol.71, issue.33???8, pp.725-732, 2009.
DOI : 10.1007/s11745-009-3316-4

R. C. Murphy, A. H. Merrill, and . Jr, Lipidomics and Imaging Mass Spectrometry, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1811, issue.11, pp.635-636, 2011.
DOI : 10.1016/j.bbalip.2011.09.003

J. Overgaard, J. G. Sørensen, S. O. Petersen, V. Loeschcke, and M. Holmstrup, Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster, Journal of Insect Physiology, vol.51, issue.11, pp.1173-1182, 2005.
DOI : 10.1016/j.jinsphys.2005.06.007

M. Parisi, R. Li, and B. Oliver, Lipid profiles of female and male Drosophila, BMC Research Notes, vol.4, issue.1, 0198.
DOI : 10.1073/pnas.93.14.7085

A. Penno, M. M. Reilly, H. Houlden, M. Laurá, K. Rentsch et al., Hereditary Sensory Neuropathy Type 1 Is Caused by the Accumulation of Two Neurotoxic Sphingolipids, Journal of Biological Chemistry, vol.285, issue.15, pp.11178-11187, 2010.
DOI : 10.1074/jbc.M109.092973

J. A. Pospisilik, D. Schramek, H. Schnidar, S. J. Cronin, N. T. Nehme et al., Drosophila Genome-wide Obesity Screen Reveals Hedgehog as a Determinant of Brown versus White Adipose Cell Fate, Cell, vol.140, issue.1, pp.148-160, 2010.
DOI : 10.1016/j.cell.2009.12.027

S. T. Pruett, A. Bushnev, K. Hagedorn, M. Adiga, C. A. Haynes et al., Thematic Review Series: Sphingolipids. Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols, The Journal of Lipid Research, vol.49, issue.8, pp.1621-1639, 2008.
DOI : 10.1194/jlr.R800012-JLR200

A. Rietveld, S. Neutz, K. Simons, and S. Eaton, Association of Sterol- and Glycosylphosphatidylinositol-linked Proteins with Drosophila Raft Lipid Microdomains, Journal of Biological Chemistry, vol.274, issue.17, pp.12049-12054, 1999.
DOI : 10.1074/jbc.274.17.12049

F. M. Roelants, D. K. Breslow, A. Muir, J. S. Weissman, and J. Thorner, Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, pp.19222-19227, 2011.
DOI : 10.1073/pnas.1116948108

J. L. Sampaio, M. J. Gerl, C. Klose, C. S. Ejsing, H. Beug et al., Membrane lipidome of an epithelial cell line, Proc. Natl. Acad. Sci. USA, pp.1903-1907, 2011.
DOI : 10.1073/pnas.1019267108

C. P. Schonbaum, S. Lee, and A. P. Mahowald, The Drosophila yolkless gene encodes a vitellogenin receptor belonging to the low density lipoprotein receptor superfamily., Proc. Natl. Acad. Sci. USA 92, pp.1485-1489, 1995.
DOI : 10.1073/pnas.92.5.1485

A. Seppo, M. Moreland, H. Schweingruber, and M. Tiemeyer, Zwitterionic and acidic glycosphingolipids of the Drosophila melanogaster embryo, European Journal of Biochemistry, vol.149, issue.12, pp.3549-3558, 2000.
DOI : 10.1046/j.1432-1327.2000.01383.x

G. Shui, X. L. Guan, P. Gopalakrishnan, Y. Xue, J. S. Goh et al., Characterization of Substrate Preference for Slc1p and Cst26p in Saccharomyces cerevisiae Using Lipidomic Approaches and an LPAAT Activity Assay, PLoS ONE, vol.6, issue.8, 2010.
DOI : 10.1371/journal.pone.0011956.s005

G. Shui, X. L. Guan, C. P. Low, G. H. Chua, J. S. Goh et al., Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics, Molecular BioSystems, vol.5, issue.6, pp.1008-1017, 2010.
DOI : 10.1039/b913353d

K. Simons and M. J. Gerl, Revitalizing membrane rafts: new tools and insights, Nature Reviews Molecular Cell Biology, vol.74, issue.10, pp.688-699, 2010.
DOI : 10.1038/nrm2977

W. S. Stark, T. N. Lin, D. Brackhahn, J. S. Christianson, and G. Y. Sun, Phospholipids inDrosophila heads: Effects of visual mutants and phototransduction manipulations, Lipids, vol.43, issue.1, pp.23-28, 1993.
DOI : 10.1007/BF02536355

J. Stiban, R. Tidhar, and A. H. Futerman, Ceramide Synthases: Roles in Cell Physiology and Signaling, Adv. Exp. Med. Biol, vol.688, pp.60-71, 2010.
DOI : 10.1007/978-1-4419-6741-1_4

M. C. Sullards, Y. Liu, Y. Chen, A. H. Merrill, and . Jr, Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS), Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1811, issue.11, pp.838-853, 2011.
DOI : 10.1016/j.bbalip.2011.06.027

M. C. Sullards, A. H. Merrill, and . Jr, Analysis of sphingosine 1-phos- phate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry, Sci. STKE, p.1, 2001.

E. Szafer-glusman, M. G. Giansanti, R. Nishihama, B. Bolival, J. Pringle et al., A Role for Very-Long-Chain Fatty Acids in Furrow Ingression during Cytokinesis??in Drosophila Spermatocytes, Current Biology, vol.18, issue.18, pp.1426-1431, 2008.
DOI : 10.1016/j.cub.2008.08.061

J. Terashima and M. Bownes, A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster, Cell Death and Differentiation, vol.153, issue.5, pp.429-440, 2005.
DOI : 10.1038/sj.cdd.4401587

G. Van-meer, D. R. Voelker, and G. W. Feigenson, Membrane lipids: where they are and how they behave, Nature Reviews Molecular Cell Biology, vol.18, issue.2, pp.112-124, 2008.
DOI : 10.1038/nrm2330

A. K. Walker, R. L. Jacobs, J. L. Watts, V. Rottiers, K. Jiang et al., A Conserved SREBP-1/Phosphatidylcholine Feedback Circuit Regulates Lipogenesis in Metazoans, Cell, vol.147, issue.4, pp.840-852, 2011.
DOI : 10.1016/j.cell.2011.09.045

C. Wang and X. Huang, Lipid metabolism and Drosophila sperm development, Science China Life Sciences, vol.135, issue.1, pp.35-40, 2012.
DOI : 10.1007/s11427-012-4274-2

URL : http://doi.org/10.1007/s11427-012-4274-2

J. Y. Yew, K. Dreisewerd, H. Luftmann, J. Mü-thing, G. Pohlentz et al., A New Male Sex Pheromone and Novel Cuticular Cues for Chemical Communication in Drosophila, Current Biology, vol.19, issue.15, pp.1245-1254, 2009.
DOI : 10.1016/j.cub.2009.06.037

C. Yuan, R. P. Rao, N. Jesmin, T. Bamba, K. Nagashima et al., CDase is a pan-ceramidase in Drosophila, Molecular Biology of the Cell, vol.22, issue.1, pp.33-43, 2011.
DOI : 10.1091/mbc.E10-05-0453