G. Adams, V. Caiozzo, and K. Baldwin, Skeletal muscle unweighting: spaceflight and ground-based models, Journal of Applied Physiology, vol.95, issue.6, pp.2185-2201, 2003.
DOI : 10.1152/japplphysiol.00346.2003

S. Trappe, D. Costill, P. Gallagher, A. Creer, and J. Peters, Exercise in space: human skeletal muscle after 6 months aboard the International Space Station, Journal of Applied Physiology, vol.106, issue.4, pp.1159-1168, 2009.
DOI : 10.1152/japplphysiol.91578.2008

G. Bajotto and Y. Shimomura, Determinants of Disuse-Induced Skeletal Muscle Atrophy: Exercise and Nutrition Countermeasures to Prevent Protein Loss, Journal of Nutritional Science and Vitaminology, vol.52, issue.4, pp.233-247, 2006.
DOI : 10.3177/jnsv.52.233

E. Morey-holton, R. Globus, A. Kaplansky, and G. Durnova, The Hindlimb Unloading Rat Model: Literature Overview, Technique Update and Comparison with Space Flight Data, Adv Space Biol Med, vol.10, pp.7-40, 2005.
DOI : 10.1016/S1569-2574(05)10002-1

J. Desaphy, S. Pierno, C. Léoty, A. George, D. Jr et al., Skeletal muscle disuse induces fibre type-dependent enhancement of Na+ channel expression, Brain, vol.124, issue.6, pp.1100-1113, 2001.
DOI : 10.1093/brain/124.6.1100

S. Pierno, J. Desaphy, A. Liantonio, D. Bellis, M. Bianco et al., Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse, Brain, vol.125, issue.7, pp.1510-1521, 2002.
DOI : 10.1093/brain/awf162

J. Desaphy, S. Pierno, A. Liantonio, V. Giannuzzi, and C. Digennaro, Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles, Pharmacological Research, vol.61, issue.6, pp.553-563, 2010.
DOI : 10.1016/j.phrs.2010.01.012

L. Brocca, M. Pellegrino, J. Desaphy, S. Pierno, C. Camerino et al., Is oxidative stress a cause or consequence of disuse muscle atrophy in mice? A proteomic approach in hindlimb-unloaded mice, Experimental Physiology, vol.292, issue.2, pp.331-350, 2010.
DOI : 10.1113/expphysiol.2009.050245

E. Dupont, C. Cieniewski-bernard, B. Bastide, and L. Stevens, Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK, AJP: Regulatory, Integrative and Comparative Physiology, vol.300, issue.2, 2011.
DOI : 10.1152/ajpregu.00793.2009

B. Fraysse, J. Desaphy, S. Pierno, D. Luca, A. Liantonio et al., Decrease in resting calcium and calcium entry associated with slow-to-fast transition in unloaded rat soleus muscle, The FASEB Journal, vol.17, pp.1916-1918, 2003.
DOI : 10.1096/fj.02-1012fje

S. Pierno, A. Liantonio, G. Camerino, D. Bellis, M. Cannone et al., Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat, Amino Acids, vol.1, issue.9, pp.431-445, 2012.
DOI : 10.1007/s00726-011-1099-4

N. Dumont and J. Frenette, Macrophages Protect against Muscle Atrophy and Promote Muscle Recovery in Vivo and in Vitro, The American Journal of Pathology, vol.176, issue.5, pp.2228-2235, 2010.
DOI : 10.2353/ajpath.2010.090884

T. Burks, E. Andres-mateos, R. Marx, R. Mejias, and C. Van-erp, Losartan Restores Skeletal Muscle Remodeling and Protects Against Disuse Atrophy in Sarcopenia, Science Translational Medicine, vol.3, issue.82, pp.82-119, 2011.
DOI : 10.1126/scitranslmed.3002227

O. Delbono, Regulation of excitation contraction coupling by insulin-like growth factor-1 in aging skeletal muscle, J Nutr Health Aging, vol.4, pp.162-164, 2000.

E. Gonzalez, M. Messi, Z. Zheng, and O. Delbono, in single intact muscle fibres from transgenic mice, The Journal of Physiology, vol.540, issue.3, pp.833-844, 2003.
DOI : 10.1113/jphysiol.2003.048165

A. Musarò, K. Mccullagh, A. Paul, L. Houghton, and G. Dobrowolny, Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle, Nature Genetics, vol.27, issue.2, pp.195-200, 2001.
DOI : 10.1038/84839

D. Luca, A. Pierno, S. Liantonio, A. Cetrone, M. Camerino et al., Enhanced Dystrophic Progression in mdx Mice by Exercise and Beneficial Effects of Taurine and Insulin-Like Growth Factor-1, Journal of Pharmacology and Experimental Therapeutics, vol.304, issue.1, pp.453-463, 2003.
DOI : 10.1124/jpet.102.041343

E. Barton, L. Morris, A. Musaro, N. Rosenthal, and H. Sweeney, mice, The Journal of Cell Biology, vol.78, issue.1, pp.137-148, 2002.
DOI : 10.1074/jbc.M004108200

B. Scicchitano, E. Rizzuto, and A. Musarò, Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1, Aging, vol.1, issue.5, pp.451-457, 2009.
DOI : 10.18632/aging.100050

D. Luca, A. Pierno, S. Camerino, C. Cocchi, D. et al., Higher content of insulin-like growth factor-I in dystrophic mdx mouse: potential role in the spontaneous regeneration through an electrophysiological investigation of muscle function, Neuromuscular Disorders, vol.9, issue.1, pp.11-18, 1999.
DOI : 10.1016/S0960-8966(98)00092-3

D. Luca, A. Pierno, S. Liantonio, A. Camerino, C. et al., Phosphorylation and IGF-1-mediated dephosphorylation pathways control the activity and the pharmacological properties of skeletal muscle chloride channels, British Journal of Pharmacology, vol.47, issue.3, 1998.
DOI : 10.1038/sj.bjp.0702107

S. Pierno, J. Desaphy, A. Liantonio, D. Luca, A. Zarrilli et al., reduces protein kinase C activity controlling the sarcolemma chloride conductance, The Journal of Physiology, vol.109, issue.3, pp.983-995, 2007.
DOI : 10.1113/jphysiol.2007.141358

J. Vernikos, Human physiology in space, BioEssays, vol.26, issue.12, pp.1029-1037, 1996.
DOI : 10.1002/bies.950181215

B. Awede, J. Thissen, P. Gailly, and J. Lebacq, Regulation of IGF-I, IGFBP-4 and IGFBP-5 gene expression by loading in mouse skeletal muscle, FEBS Letters, vol.270, issue.3, pp.263-267, 1999.
DOI : 10.1016/S0014-5793(99)01469-6

B. Blaauw, M. Canato, L. Agatea, L. Toniolo, and C. Mammucari, Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation, The FASEB Journal, vol.23, issue.11, pp.3896-3905, 2009.
DOI : 10.1096/fj.09-131870

D. Sandonà, J. Desaphy, G. Camerino, E. Bianchini, and S. Ciciliot, Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission, PLoS ONE, vol.588, issue.3, p.33232, 2012.
DOI : 10.1371/journal.pone.0033232.s005

S. Schiaffino, L. Gorza, S. Sartore, L. Saggin, and S. Ausoni, Three myosin heavy chain isoforms in type 2 skeletal muscle fibres, Journal of Muscle Research and Cell Motility, vol.256, issue.3, pp.197-205, 1989.
DOI : 10.1007/BF01739810

S. Bryant and D. Conte-camerino, Chloride channel regulation in the skeletal muscle of normal and myotonic goats, Pfl???gers Archiv European Journal of Physiology, vol.232, issue.6, pp.605-610, 1991.
DOI : 10.1007/BF00372958

S. Pierno, G. Camerino, V. Cippone, J. Rolland, and J. Desaphy, Statins and fenofibrate affect skeletal muscle chloride conductance in rats by differently impairing ClC-1 channel regulation and expression, British Journal of Pharmacology, vol.23, issue.2, pp.1206-1215, 2009.
DOI : 10.1111/j.1476-5381.2008.00079.x

D. Luca, A. , C. Camerino, and D. , Effects of aging on the mechanical threshold of rat skeletal muscle fibers, Pfl??gers Archiv, vol.254, issue.3-4, pp.407-409, 1992.
DOI : 10.1007/BF00374477

S. Pierno, D. Luca, A. Beck, C. George, A. Jr et al., Aging-associated down-regulation of ClC-1 expression in skeletal muscle: phenotypic-independent relation to the decrease of chloride conductance, FEBS Letters, vol.157, issue.1, pp.12-16, 1999.
DOI : 10.1016/S0014-5793(99)00202-1

E. Barton-davis, D. Shoturma, A. Musaro, N. Rosenthal, and H. Sweeney, Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function, Proceedings of the National Academy of Sciences, vol.95, issue.26, pp.15603-15607, 1998.
DOI : 10.1073/pnas.95.26.15603

D. Prete, Z. Musarò, A. Rizzuto, and E. , Measuring Mechanical Properties, Including Isotonic Fatigue, of Fast and Slow MLC/mIgf-1 Transgenic Skeletal Muscle, Annals of Biomedical Engineering, vol.84, issue.Pt 2, pp.1281-1290, 2008.
DOI : 10.1007/s10439-008-9496-x

L. Pelosi, C. Giacinti, C. Nardis, G. Borsellino, and E. Rizzuto, Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines, The FASEB Journal, vol.21, issue.7, pp.1393-1402, 2007.
DOI : 10.1096/fj.06-7690com

G. Goldspink, Impairment of IGF-I gene splicing and MGF expression associated with muscle wasting, The International Journal of Biochemistry & Cell Biology, vol.38, issue.3, pp.481-489, 2006.
DOI : 10.1016/j.biocel.2005.10.001

R. Nakao, K. Hirasaka, J. Goto, K. Ishidoh, and C. Yamada, Ubiquitin Ligase Cbl-b Is a Negative Regulator for Insulin-Like Growth Factor 1 Signaling during Muscle Atrophy Caused by Unloading, Molecular and Cellular Biology, vol.29, issue.17, pp.4798-4811, 2009.
DOI : 10.1128/MCB.01347-08

J. Lawler, H. Kwak, J. Kim, Y. Lee, and J. Hord, Biphasic Stress Response in the Soleus during Reloading after Hind Limb Unloading, Medicine & Science in Sports & Exercise, vol.44, issue.4, pp.600-609, 2012.
DOI : 10.1249/MSS.0b013e31823ab37a

T. Stitt, D. Drujan, B. Clarke, F. Panaro, and Y. Timofeyva, The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors, Molecular Cell, vol.14, issue.3, pp.395-403, 2004.
DOI : 10.1016/S1097-2765(04)00211-4

G. Adams and S. Mccue, Localized infusion of IGF-1 results in skeletal muscle hypertrophy in rats, J Appl Physiol, vol.84, pp.1716-1722, 1998.

J. Schertzer and G. Lynch, Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury, Gene Therapy, vol.284, issue.23, pp.1657-1664, 2006.
DOI : 10.1038/sj.gt.3302817

S. Kunkel, M. Suneja, S. Ebert, K. Bongers, and D. Fox, mRNA Expression Signatures of Human Skeletal Muscle Atrophy Identify a Natural Compound that Increases Muscle Mass, Cell Metabolism, vol.13, issue.6, pp.627-638, 2011.
DOI : 10.1016/j.cmet.2011.03.020

C. Rinaldi, L. Bott, K. Chen, G. Harmison, and M. Katsuno, IGF-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy, Mol, 2012.

M. Alzghoul, D. Gerrard, B. Watkins, and K. Hannon, Ectopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo, The FASEB Journal, vol.18, pp.221-223, 2004.
DOI : 10.1096/fj.03-0293fje

D. Criswell, F. Booth, F. Demayo, R. Schwartz, and S. Gordon, Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy, Am J Physiol, vol.275, pp.373-379, 1998.

T. Shavlakadze and M. Grounds, Comments on Point:Counterpoint: IGF is/ is not the major physiological regulator of muscle mass. IGF-1 is a major regulator of muscle mass during growth but not for adult myofiber hypertrophy, J Appl Physiol, vol.108, p.1829, 2010.

J. Desaphy, S. Pierno, A. Liantonio, D. Luca, A. Didonna et al., Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile, Neurobiology of Disease, vol.18, issue.2, pp.356-365, 2005.
DOI : 10.1016/j.nbd.2004.09.016

M. Willis, C. Ike, L. Li, D. Wang, and D. Glass, Muscle Ring Finger 1, but not Muscle Ring Finger 2, Regulates Cardiac Hypertrophy In Vivo, Circulation Research, vol.100, issue.4, pp.456-459, 2007.
DOI : 10.1161/01.RES.0000259559.48597.32

T. Braun and M. Gautel, Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis, Nature Reviews Molecular Cell Biology, vol.16, issue.6, pp.349-361, 2011.
DOI : 10.1038/nrm3118

B. Clarke, D. Drujan, M. Willis, L. Murphy, and R. Corpina, The E3 Ligase MuRF1 Degrades Myosin Heavy Chain Protein in Dexamethasone-Treated Skeletal Muscle, Cell Metabolism, vol.6, issue.5, pp.376-385, 2007.
DOI : 10.1016/j.cmet.2007.09.009

A. Murton, D. Constantin, and P. Greenhaff, The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1782, issue.12, pp.730-743, 2008.
DOI : 10.1016/j.bbadis.2008.10.011

URL : https://hal.archives-ouvertes.fr/hal-00501595

D. Cai, J. Frantz, N. Tawa, . Jr, P. Melendez et al., IKK??/NF-??B Activation Causes Severe Muscle Wasting in Mice, Cell, vol.119, issue.2, pp.285-298, 2004.
DOI : 10.1016/j.cell.2004.09.027

URL : http://doi.org/10.1016/j.cell.2004.09.027

J. Lin, C. Handschin, and B. Spiegelman, Metabolic control through the PGC-1 family of transcription coactivators, Cell Metabolism, vol.1, issue.6, pp.361-370, 2005.
DOI : 10.1016/j.cmet.2005.05.004

R. Arya, V. Kedar, J. Hwang, H. Mcdonough, and H. Li, Muscle ring finger protein-1 inhibits PKC?? activation and prevents cardiomyocyte hypertrophy, The Journal of Cell Biology, vol.265, issue.6, pp.1147-1159, 2004.
DOI : 10.1016/S0303-7207(99)00208-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172633

N. Alamdari, Z. Aversa, E. Castillero, and P. Hasselgren, Acetylation and deacetylation???novel factors in muscle wasting, Metabolism, vol.62, issue.1, pp.1-11, 2013.
DOI : 10.1016/j.metabol.2012.03.019

M. Potthoff, H. Wu, M. Arnold, J. Shelton, and J. Backs, Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers, Journal of Clinical Investigation, vol.117, issue.9, pp.2459-2467, 2007.
DOI : 10.1172/JCI31960DS1

S. Mcgee and M. Hargreaves, Histone modifications and exercise adaptations, Journal of Applied Physiology, vol.110, issue.1, pp.258-263, 2011.
DOI : 10.1152/japplphysiol.00979.2010

H. Wu and E. Olson, Activation of the MEF2 transcription factor in skeletal muscles from myotonic mice, Journal of Clinical Investigation, vol.109, issue.10, pp.1327-1333, 2002.
DOI : 10.1172/JCI0215417

D. Andrea, M. Pisaniello, A. Serra, C. Senni, M. Castaldi et al., Protein kinase C theta co-operates with calcineurin in the activation of slow muscle genes in cultured myogenic cells, Journal of Cellular Physiology, vol.180, issue.2, pp.379-388, 2006.
DOI : 10.1002/jcp.20585

K. Gundersen, Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise, Biological Reviews, vol.16, issue.3, pp.564-600, 2010.
DOI : 10.1111/j.1469-185X.2010.00161.x

R. Bassel-duby and E. Olson, Signaling Pathways in Skeletal Muscle Remodeling, Annual Review of Biochemistry, vol.75, issue.1, pp.19-37, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142622

N. Alamdari, I. Smith, Z. Aversa, and P. Hasselgren, Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle, AJP: Regulatory, Integrative and Comparative Physiology, vol.299, issue.2, pp.509-520, 2010.
DOI : 10.1152/ajpregu.00858.2009

S. Bae, H. Cha, T. Ju, Y. Kim, and H. Kim, Deficiency of inducible nitric oxide synthase attenuates immobilization-induced skeletal muscle atrophy in mice, Journal of Applied Physiology, vol.113, issue.1, pp.114-123, 2012.
DOI : 10.1152/japplphysiol.00431.2011

R. Ringseis, J. Keller, I. Lukas, J. Spielmann, and E. Most, Treatment with pharmacological PPAR?? agonists stimulates the ubiquitin proteasome pathway and myofibrillar protein breakdown in skeletal muscle of rodents, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1830, issue.1, pp.2105-2117, 2013.
DOI : 10.1016/j.bbagen.2012.09.024

M. Sandri, Signaling in Muscle Atrophy and Hypertrophy, Physiology, vol.23, issue.3, pp.160-170, 2008.
DOI : 10.1152/physiol.00041.2007

D. Chrysis and A. Chagin, Insulin-like growth factor-1 restores dexamethasone-induced heart growth arrest in rats: the role of the ubiquitin pathway, HORMONES, vol.10, issue.1, pp.46-91, 2011.
DOI : 10.14310/horm.2002.1292

S. Yang, M. Alnaqeeb, H. Simpson, and G. Goldspink, Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch, Journal of Muscle Research and Cell Motility, vol.116, issue.4, pp.487-495, 1996.
DOI : 10.1007/BF00123364

J. Linderman, K. Gosselink, F. Booth, V. Mukku, and R. Grindeland, Resistance exercise and growth hormone as countermeasures for skeletal muscle atrophy in hindlimb-suspended rats, Am J Physiol, vol.267, pp.365-371, 1994.

B. Fraysse, J. Desaphy, J. Rolland, S. Pierno, and A. Liantonio, Fiber type-related changes in rat skeletal muscle calcium homeostasis during aging and restoration by growth hormone, Neurobiology of Disease, vol.21, issue.2, pp.372-380, 2006.
DOI : 10.1016/j.nbd.2005.07.012

G. Goldspink and S. Harridge, Growth factors and muscle ageing, Experimental Gerontology, vol.39, issue.10, pp.1433-1438, 2004.
DOI : 10.1016/j.exger.2004.08.010

A. Musarò, K. Mccullagh, F. Naya, E. Olson, and N. Rosenthal, IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1, Nature, vol.400, pp.581-585, 1999.

M. Sandri, C. Sandri, A. Gilbert, C. Skurk, and E. Calabria, Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy, Cell, vol.117, issue.3, pp.399-412, 2004.
DOI : 10.1016/S0092-8674(04)00400-3

S. Kim, R. Roy, J. Kim, H. Zhong, and F. Haddad, Gene expression during inactivity-induced muscle atrophy: effects of brief bouts of a forceful contraction countermeasure, Journal of Applied Physiology, vol.105, issue.4, pp.1246-1254, 2008.
DOI : 10.1152/japplphysiol.90668.2008