E. Colombo, M. Alcalay, and P. G. Pelicci, Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases, Oncogene, vol.12, issue.23, pp.2595-2609, 2011.
DOI : 10.1038/onc.2010.646

L. Federici and B. Falini, Nucleophosmin mutations in acute myeloid leukemia: A tale of protein unfolding and mislocalization, Protein Science, vol.2, issue.5, pp.545-556, 2013.
DOI : 10.1002/pro.2240

C. G. Grummitt, F. M. Townsley, C. M. Johnson, A. J. Warren, and M. Bycroft, Structural Consequences of Nucleophosmin Mutations in Acute Myeloid Leukemia, Journal of Biological Chemistry, vol.283, issue.34, pp.283-23326, 2008.
DOI : 10.1074/jbc.M801706200

S. Chiarella, A. De-cola, G. L. Scaglione, E. Carletti, V. Graziano et al., Nucleophosmin mutations alter its nucleolar localization by impairing Gquadruplex binding at ribosomal DNA, Nucleic Acid Res, pp.41-3228, 2013.

F. Scaloni, S. Gianni, L. Federici, B. Falini, and M. Brunori, Folding mechanism of the C-terminal domain of nucleophosmin: residual structure in the denatured state and its pathophysiological significance, The FASEB Journal, vol.23, issue.8, pp.2360-2365, 2009.
DOI : 10.1096/fj.08-128306

A. R. Fersht, From the first protein structures to our current knowledge of protein folding: delights and scepticisms, Nature Reviews Molecular Cell Biology, vol.74, issue.8, pp.650-654, 2008.
DOI : 10.1038/nrm2446

W. F. Van-gunsteren, R. Bürgi, C. Peter, and X. Daura, The key to solving the protein- Folding problem lies in an accurate description of the denatured state, Angew. Chem., Int. Ed. Engl, pp.40-351, 2001.

U. Mayor, J. G. Grossmann, N. W. Foster, S. M. Freund, and A. R. Fersht, The Denatured State of Engrailed Homeodomain under Denaturing and Native Conditions, Journal of Molecular Biology, vol.333, issue.5, pp.333-977, 2003.
DOI : 10.1016/j.jmb.2003.08.062

E. R. Mccarney, J. E. Kohn, and K. W. Plaxco, Is There or Isn't There? The Case for (and Against) Residual Structure in Chemically Denatured Proteins, Critical Reviews in Biochemistry and Molecular Biology, vol.299, issue.4, pp.40-181, 2005.
DOI : 10.1021/bi00150a029

A. Morrone, M. E. Mccully, P. N. Bryan, M. Brunori, V. Daggett et al., The Denatured State Dictates the Topology of Two Proteins with Almost Identical Sequence but Different Native Structure and Function, Journal of Biological Chemistry, vol.286, issue.5, pp.286-3863, 2011.
DOI : 10.1074/jbc.M110.155911

URL : https://hal.archives-ouvertes.fr/pasteur-00982071

T. L. Religa, J. S. Markson, U. Mayor, S. M. Freund, and A. R. Fersht, Solution structure of a protein denatured state and folding intermediate, Nature, vol.44, issue.7061, pp.1053-1056, 2005.
DOI : 10.1021/ja981686m

K. B. Wong, J. Clarke, C. J. Bond, J. L. Neira, S. M. Freund et al., Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding, Journal of Molecular Biology, vol.296, issue.5, pp.296-1257, 2000.
DOI : 10.1006/jmbi.2000.3523

P. A. Dalby, M. Oliveberg, and A. R. Fersht, Movement of the Intermediate and Rate Determining Transition State of Barnase on the Energy Landscape with Changing Temperature, Biochemistry, vol.37, issue.13, pp.4674-4679, 1998.
DOI : 10.1021/bi972798d

M. C. Shastry and H. Roder, Evidence for barrier-limited protein folding kinetics on the microsecond time scale, Nature Structural Biology, vol.3, issue.5, pp.385-392, 1998.
DOI : 10.1146/annurev.biochem.66.1.549

F. Scaloni, L. Federici, M. Brunori, and S. Gianni, Deciphering the folding transition state structure and denatured state properties of Nucleophosmin C-terminal domain, Proc. Natl. Acad. Sci, pp.5447-5452, 2010.
DOI : 10.1073/pnas.0910516107

L. Federici, A. Arcovito, G. L. Scaglione, F. Scaloni, C. Lo-sterzo et al., Nucleophosmin C-terminal Leukemia-associated Domain Interacts with G-rich Quadruplex Forming DNA, Journal of Biological Chemistry, vol.285, issue.48, pp.285-37138, 2010.
DOI : 10.1074/jbc.M110.166736

A. Gallo, C. Lo-sterzo, M. Mori, A. Di-matteo, I. Bertini et al., Structure of Nucleophosmin DNA-binding Domain and Analysis of Its Complex with a G-quadruplex Sequence from the c-MYC Promoter, Journal of Biological Chemistry, vol.287, issue.32, pp.287-26539, 2012.
DOI : 10.1074/jbc.M112.371013

D. Marasco, A. Ruggiero, C. Vascotto, M. Poletto, P. L. Scognamiglio et al., Role of mutual interactions in the chemical and thermal stability of nucleophosmin NPM1 domains, Biochemical and Biophysical Research Communications, vol.430, issue.2, pp.430-523, 2013.
DOI : 10.1016/j.bbrc.2012.12.002

I. E. Sanchez and T. Kiefhaber, Hammond Behavior versus Ground State Effects in Protein Folding: Evidence for Narrow Free Energy Barriers and Residual Structure in Unfolded States, Journal of Molecular Biology, vol.327, issue.4, pp.867-884, 2003.
DOI : 10.1016/S0022-2836(03)00171-2

M. Silow and M. Oliveberg, Transient aggregates in protein folding are easily mistaken for folding intermediates, Proc. Natl. Acad. Sci. USA 94, pp.6084-6086, 1997.
DOI : 10.1073/pnas.94.12.6084

M. M. Santoro and D. W. Bolen, Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl .alpha.-chymotrypsin using different denaturants, Biochemistry, vol.27, issue.21, pp.8063-8068, 1988.
DOI : 10.1021/bi00421a014

S. E. Jackson and A. R. Fersht, Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition, Biochemistry, vol.30, issue.43, pp.10428-10435, 1991.
DOI : 10.1021/bi00107a010

C. Tanford, Isothermal Unfolding of Globular Proteins in Aqueous Urea Solutions, Journal of the American Chemical Society, vol.86, issue.10, pp.2050-2059, 1964.
DOI : 10.1021/ja01064a028

F. Huang, L. Ying, and A. R. Fersht, Direct observation of barrier-limited folding of BBL by single-molecule fluorescence resonance energy transfer, Proc. Natl. Acad. Sci, pp.106-16239, 2009.
DOI : 10.1073/pnas.0909126106

P. Li, F. Y. Oliva, A. N. Naganathan, and V. Muñoz, Dynamics of one-state downhill protein folding, Proc. Natl. Acad. Sci, pp.103-108, 2009.
DOI : 10.1073/pnas.0802986106