K. Hoshino, Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product, 1999.

R. Shimazu, MD-2, a Molecule that Confers Lipopolysaccharide Responsiveness on Toll-like Receptor 4, The Journal of Experimental Medicine, vol.161, issue.11, pp.1777-1782, 1999.
DOI : 10.1084/jem.180.4.1217

K. Takeda and S. Akira, Microbial recognition by Toll-like receptors, Journal of Dermatological Science, vol.34, issue.2, pp.73-82, 2004.
DOI : 10.1016/j.jdermsci.2003.10.002

J. Schletter, H. Heine, A. Ulmer, and E. Rietschel, Molecular mechanisms of endotoxin activity, Archives of Microbiology, vol.50, issue.6, pp.383-389, 1995.
DOI : 10.1007/BF02529735

C. Raetz, C. Reynolds, M. Trent, and R. Bishop, Lipid A Modification Systems in Gram-Negative Bacteria, Annual Review of Biochemistry, vol.76, issue.1, pp.295-329, 2007.
DOI : 10.1146/annurev.biochem.76.010307.145803

X. Wang and P. Quinn, Endotoxins: Lipopolysaccharides of Gram-Negative Bacteria, Subcell Biochem, vol.53, pp.3-25, 2010.
DOI : 10.1007/978-90-481-9078-2_1

M. Demarco and R. Woods, From agonist to antagonist: Structure and dynamics of innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial endotoxins, Molecular Immunology, vol.49, issue.1-2, pp.124-133, 2011.
DOI : 10.1016/j.molimm.2011.08.003

K. Kawahara, H. Tsukano, H. Watanabe, B. Lindner, and M. Matsuura, Modification of the Structure and Activity of Lipid A in Yersinia pestis Lipopolysaccharide by Growth Temperature, Infection and Immunity, vol.70, issue.8, pp.4092-4098, 2002.
DOI : 10.1128/IAI.70.8.4092-4098.2002

L. Guo, Regulation of Lipid A Modifications by Salmonella typhimurium Virulence Genes phoP-phoQ, Science, vol.276, issue.5310, pp.250-253, 1997.
DOI : 10.1126/science.276.5310.250

G. Pier, Pseudomonas aeruginosa lipopolysaccharide: A major virulence factor, initiator of inflammation and target for effective immunity, International Journal of Medical Microbiology, vol.297, issue.5, pp.277-295, 2007.
DOI : 10.1016/j.ijmm.2007.03.012

C. Cigana, Pseudomonas aeruginosa Exploits Lipid A and Muropeptides Modification as a Strategy to Lower Innate Immunity during Cystic Fibrosis Lung Infection, PLoS ONE, vol.4, issue.12, p.8439, 2009.
DOI : 10.1371/journal.pone.0008439.s005

H. Dupont, M. Levine, R. Hornick, and S. Formal, Inoculum Size in Shigellosis and Implications for Expected Mode of Transmission, Journal of Infectious Diseases, vol.159, issue.6, pp.1126-1128, 1989.
DOI : 10.1093/infdis/159.6.1126

M. Ogawa, Y. Handa, H. Ashida, M. Suzuki, and C. Sasakawa, The versatility of Shigella effectors, Nature Reviews Microbiology, vol.68, issue.1, pp.11-16, 2008.
DOI : 10.1038/nrmicro1814

P. Clerc, A. Ryter, J. Mounier, and P. Sansonetti, Plasmid-mediated intracellular multiplication of Shigella flexneri, Annales de l'Institut Pasteur / Microbiologie, vol.137, issue.1, pp.315-320, 1986.
DOI : 10.1016/S0769-2609(86)80041-2

P. Sansonetti, A. Ryter, P. Clerc, A. Maurelli, and J. Mounier, Multiplication of Shigella flexneri within HeLa cells: Lysis of the phagocytic vacuole and plasmid-mediated contact hemolysis, Infect Immun, vol.51, issue.2, pp.461-469, 1986.

D. Philpott, S. Yamaoka, A. Israël, and P. Sansonetti, Invasive Shigella flexneri Activates NF-??B Through a Lipopolysaccharide-Dependent Innate Intracellular Response and Leads to IL-8 Expression in Epithelial Cells, The Journal of Immunology, vol.165, issue.2, pp.903-914, 2000.
DOI : 10.4049/jimmunol.165.2.903

P. Sansonetti, T. Van-nhieu, G. Egile, and C. , Rupture of the Intestinal Epithelial Barrier and Mucosal Invasion by Shigella flexneri, Clinical Infectious Diseases, vol.28, issue.3, pp.466-475, 1999.
DOI : 10.1086/515150

T. Suzuki, A Novel Caspase-1/Toll-like Receptor 4-independent Pathway of Cell Death Induced by Cytosolic Shigella in Infected Macrophages, Journal of Biological Chemistry, vol.280, issue.14, pp.14042-14050, 2005.
DOI : 10.1074/jbc.M414671200

F. Martinon, K. Burns, and J. Tschopp, The Inflammasome, Molecular Cell, vol.10, issue.2, pp.417-426, 2002.
DOI : 10.1016/S1097-2765(02)00599-3

T. Bergsbaken, S. Fink, and B. Cookson, Pyroptosis: host cell death and inflammation, Nature Reviews Microbiology, vol.65, issue.2, pp.99-109, 2009.
DOI : 10.1038/nrmicro2070

K. Schroder and J. Tschopp, The Inflammasomes, Cell, vol.140, issue.6, pp.821-832, 2010.
DOI : 10.1016/j.cell.2010.01.040

T. Suzuki, Differential Regulation of Caspase-1 Activation, Pyroptosis, and Autophagy via Ipaf and ASC in Shigella-Infected Macrophages, PLoS Pathogens, vol.202, issue.8, p.111, 2007.
DOI : 0022-1007(2005)202[1235:IOCWCP]2.0.CO;2

P. Sansonetti, J. Arondel, J. Cavaillon, and M. Huerre, Role of interleukin-1 in the pathogenesis of experimental shigellosis., Journal of Clinical Investigation, vol.96, issue.2, pp.884-892, 1995.
DOI : 10.1172/JCI118135

J. Arondel, M. Singer, A. Matsukawa, A. Zychlinsky, and P. Sansonetti, Increased in- terleukin-1 (IL-1) and imbalance between IL-1 and IL-1 receptor antagonist during acute inflammation in experimental Shigellosis, Infect Immun, vol.67, issue.11, pp.6056-6066, 1999.

P. Sansonetti, Caspase-1 Activation of IL-1?? and IL-18 Are Essential for Shigella flexneri???Induced Inflammation, Immunity, vol.12, issue.5, pp.581-590, 2000.
DOI : 10.1016/S1074-7613(00)80209-5

L. Lembo-fazio, Gadd45?? activity is the principal effector of Shigella mitochondria-dependent epithelial cell death in vitro and ex vivo, Cell Death and Disease, vol.99, issue.2, p.122, 2011.
DOI : 10.1038/cddis.2011.4

URL : https://hal.archives-ouvertes.fr/pasteur-00975386

D. Hauteville and H. , Two msbB Genes Encoding Maximal Acylation of Lipid A Are Required for Invasive Shigella flexneri to Mediate Inflammatory Rupture and Destruction of the Intestinal Epithelium, The Journal of Immunology, vol.168, issue.10, pp.5240-5251, 2002.
DOI : 10.4049/jimmunol.168.10.5240

R. Ranallo, Virulence, Inflammatory Potential, and Adaptive Immunity Induced by Shigella flexneri msbB Mutants, Infection and Immunity, vol.78, issue.1, pp.400-412, 2010.
DOI : 10.1128/IAI.00533-09

A. Cersini, A. Salvia, and M. Bernardini, Intracellular multiplication and virulence of Shigella flexneri auxotrophic mutants, Infect Immun, vol.66, issue.2, pp.549-557, 1998.

D. Castro, C. Parrilli, M. Holst, O. Molinaro, and A. , Microbe-Associated Molecular Patterns in Innate Immunity, Methods Enzymol, vol.480, pp.89-115, 2010.
DOI : 10.1016/S0076-6879(10)80005-9

A. Molinaro, Full structural characterization of Shigella flexneri M90T serotype 5 wild-type R-LPS and its ??galU mutant: glycine residue location in the inner core of the lipopolysaccharide, Glycobiology, vol.18, issue.3, pp.260-269, 2008.
DOI : 10.1093/glycob/cwm140

L. Sturiale, Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides, Journal of Mass Spectrometry, vol.8, issue.11, pp.1135-1142, 2011.
DOI : 10.1002/jms.2000

G. Nigro, Muramylpeptide shedding modulates cell sensing of Shigella flexneri, Cellular Microbiology, vol.66, issue.3, pp.682-695, 2008.
DOI : 10.1016/0167-7012(90)90056-C

C. Erridge, S. Kennedy, C. Spickett, and D. Webb, Oxidized Phospholipid Inhibition of Toll-like Receptor (TLR) Signaling Is Restricted to TLR2 and TLR4: ROLES FOR CD14, LPS-BINDING PROTEIN, AND MD2 AS TARGETS FOR SPECIFICITY OF INHIBITION, Journal of Biological Chemistry, vol.283, issue.36, pp.24748-24759, 2008.
DOI : 10.1074/jbc.M800352200

B. Park, The structural basis of lipopolysaccharide recognition by the TLR4???MD-2 complex, Nature, vol.50, issue.7242, pp.1191-1195, 2009.
DOI : 10.1038/nature07830

H. Kim, Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran, Cell, vol.130, issue.5, pp.906-917, 2007.
DOI : 10.1016/j.cell.2007.08.002

U. Ohto, K. Fukase, K. Miyake, and Y. Satow, Crystal Structures of Human MD-2 and Its Complex with Antiendotoxic Lipid IVa, Science, vol.316, issue.5831, pp.1632-1634, 2007.
DOI : 10.1126/science.1139111

J. Kagan and R. Medzhitov, Phosphoinositide-Mediated Adaptor Recruitment Controls Toll-like Receptor Signaling, Cell, vol.125, issue.5, pp.943-955, 2006.
DOI : 10.1016/j.cell.2006.03.047

I. Zanoni, CD14 Controls the LPS-Induced Endocytosis of Toll-like Receptor 4, Cell, vol.147, issue.4, pp.868-880, 2011.
DOI : 10.1016/j.cell.2011.09.051

S. Akira and K. Takeda, Toll-like receptor signalling, Nature Reviews Immunology, vol.303, issue.7, pp.499-511, 2004.
DOI : 10.1038/nri1391

S. Carrigan, IFN Regulatory Factor 3 Contributes to the Host Response during Pseudomonas aeruginosa Lung Infection in Mice, The Journal of Immunology, vol.185, issue.6, pp.3602-3609, 2010.
DOI : 10.4049/jimmunol.0903429

P. Broz and D. Monack, Molecular mechanisms of inflammasome activation during microbial infections, Immunological Reviews, vol.7, issue.1, pp.174-190, 2011.
DOI : 10.1111/j.1600-065X.2011.01041.x

S. Willingham, Microbial Pathogen-Induced Necrotic Cell Death Mediated by the Inflammasome Components CIAS1/Cryopyrin/NLRP3 and ASC, Cell Host & Microbe, vol.2, issue.3, pp.147-159, 2007.
DOI : 10.1016/j.chom.2007.07.009

J. Koterski, M. Nahvi, M. Venkatesan, and B. Haimovich, Virulent Shigella flexneri Causes Damage to Mitochondria and Triggers Necrosis in Infected Human Monocyte-Derived Macrophages, Infection and Immunity, vol.73, issue.1, pp.504-513, 2005.
DOI : 10.1128/IAI.73.1.504-513.2005

T. Nonaka, A. Kuwae, C. Sasakawa, and S. Imajoh-ohmi, YSH6000 induces two types of cell death, apoptosis and oncosis, in the differentiated human monoblastic cell line U937, FEMS Microbiology Letters, vol.174, issue.1, pp.89-95, 1999.
DOI : 10.1111/j.1574-6968.1999.tb13553.x

J. Edgeworth, J. Spencer, A. Phalipon, G. Griffin, and P. Sansonetti, Cytotoxicity and interleukin-1?? processing following Shigella flexneri infection of human monocyte-derived dendritic cells, European Journal of Immunology, vol.32, issue.5, pp.1464-1471, 2002.
DOI : 10.1002/1521-4141(200205)32:5<1464::AID-IMMU1464>3.0.CO;2-G

L. Carneiro, Shigella Induces Mitochondrial Dysfunction and Cell Death in Nonmyleoid Cells, Cell Host & Microbe, vol.5, issue.2, pp.123-136, 2009.
DOI : 10.1016/j.chom.2008.12.011

I. Tattoli, Intracellular bacteriolysis triggers a massive apoptotic cell death in Shigella-infected epithelial cells, Microbes and Infection, vol.10, issue.10-11, pp.10-111114, 2008.
DOI : 10.1016/j.micinf.2008.06.004

C. Clark and A. Maurelli, Shigella flexneri Inhibits Staurosporine-Induced Apoptosis in Epithelial Cells, Infection and Immunity, vol.75, issue.5, pp.2531-2539, 2007.
DOI : 10.1128/IAI.01866-06

P. Sansonetti, Molecular and cellular bases of Shigella flexneri virulence], Bull Acad Natl Med, vol.175, issue.6, pp.803-809, 1991.

S. Montminy, Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response, Nature Immunology, vol.165, issue.10, pp.1066-1073, 2006.
DOI : 10.1016/S1074-7613(00)80596-8

C. Airhart, Induction of innate immunity by lipid A mimetics increases survival from pneumonic plague, Microbiology, vol.154, issue.7, pp.2131-2138, 2008.
DOI : 10.1099/mic.0.2008/017566-0

M. Martini-c, A. Hoare, I. Contreras, and S. Alvarez, Contribution of the Lipopolysaccharide to Resistance of Shigella flexneri 2a to Extreme Acidity, PLoS ONE, vol.34, issue.17, p.25557, 2011.
DOI : 10.1371/journal.pone.0025557.t003

C. Niu, Analysis of Soluble Protein Complexes in Shigella flexneri Reveals the Influence of Temperature on the Amount of Lipopolysaccharide, Molecular & Cellular Proteomics, vol.12, issue.5, pp.1250-1258, 2013.
DOI : 10.1074/mcp.M112.025270

S. Chan and V. Reinhold, Detailed Structural Characterization of Lipid A: Electrospray Ionization Coupled with Tandem Mass-Spectrometry, Analytical Biochemistry, vol.218, issue.1, pp.63-73, 1994.
DOI : 10.1006/abio.1994.1141

P. Rallabhandi, Differential Activation of Human TLR4 by Escherichia coli and Shigella flexneri 2a Lipopolysaccharide: Combined Effects of Lipid A Acylation State and TLR4 Polymorphisms on Signaling, The Journal of Immunology, vol.180, issue.2, pp.1139-1147, 2008.
DOI : 10.4049/jimmunol.180.2.1139

H. Flad, H. Loppnow, E. Rietschel, and A. Ulmer, Agonists and antagonists for lipopolysaccharide-induced cytokines, Immunobiology, vol.187, issue.3-5, pp.3-5303, 1993.
DOI : 10.1016/S0171-2985(11)80346-3

C. Raetz and C. Whitfield, Lipopolysaccharide Endotoxins, Annual Review of Biochemistry, vol.71, issue.1, pp.635-700, 2002.
DOI : 10.1146/annurev.biochem.71.110601.135414

S. Sato, Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-?? (TRIF) Associates with TNF Receptor-Associated Factor 6 and TANK-Binding Kinase 1, and Activates Two Distinct Transcription Factors, NF-??B and IFN-Regulatory Factor-3, in the Toll-Like Receptor Signaling, The Journal of Immunology, vol.171, issue.8, pp.4304-4310, 2003.
DOI : 10.4049/jimmunol.171.8.4304

E. Miao, Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome, Proceedings of the National Academy of Sciences, vol.107, issue.7, pp.3076-3080, 2010.
DOI : 10.1073/pnas.0913087107

L. Senerovic, Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages, Cell Death and Disease, vol.360, issue.9, p.384, 2012.
DOI : 10.1038/cddis.2012.124

W. Beatty and P. Sansonetti, Role of lipopolysaccharide in signaling to subepithelial polymorphonuclear leukocytes, Infect Immun, vol.65, issue.11, pp.4395-4404, 1997.

M. Ingersoll and A. Zychlinsky, ShiA Abrogates the Innate T-Cell Response to Shigella flexneri Infection, Infection and Immunity, vol.74, issue.4, pp.2317-2327, 2006.
DOI : 10.1128/IAI.74.4.2317-2327.2006

I. Mandic-mulec, J. Weiss, and A. Zychlinsky, Shigella flexneri is trapped in polymorphonuclear leukocyte vacuoles and efficiently killed, Infect Immun, vol.65, issue.1, pp.110-115, 1997.

M. Garcia, A. Labigne, L. Bouguenec, and C. , Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS1 insertion sequences., Journal of Bacteriology, vol.176, issue.24, pp.7601-7613, 1994.
DOI : 10.1128/jb.176.24.7601-7613.1994

F. Marim, T. Silveira, D. Lima, J. Zamboni, and D. , A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells, PLoS ONE, vol.7, issue.12, p.15263, 2010.
DOI : 10.1371/journal.pone.0015263.g008

D. Ermert, A. Zychlinsky, and C. Urban, Fungal and Bacterial Killing by Neutrophils, Methods Mol Biol, vol.470, pp.293-312, 2009.
DOI : 10.1007/978-1-59745-204-5_21

L. Liu, C. Dahlgren, H. Elwing, and H. Lundqvist, A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils, Journal of Immunological Methods, vol.192, issue.1-2, pp.173-178, 1996.
DOI : 10.1016/0022-1759(96)00049-X

C. Shi, Activation of autophagy by inflammatory signals limits IL-1?? production by targeting ubiquitinated inflammasomes for destruction, Nature Immunology, vol.442, issue.3, pp.255-263, 2012.
DOI : 10.1074/jbc.M109.054197