O. Heby and L. Persson, Molecular genetics of polyamine synthesis in eukaryotic cells, Trends in Biochemical Sciences, vol.15, issue.4, p.153, 2004.
DOI : 10.1016/0968-0004(90)90216-X

D. A. Averill-bates, E. Agostinelli, E. Przybytkowski, M. A. Mateescu, and B. Mondovi, Cytotoxicity and Kinetic Analysis of Purified Bovine Serum Amine Oxidase in the Presence of Spermine in Chinese Hamster Ovary Cells, Archives of Biochemistry and Biophysics, vol.300, issue.1, p.75, 1993.
DOI : 10.1006/abbi.1993.1011

E. Agostinelli, E. Przybytkowski, and D. A. Averill-bates, Glucose, glutathione, and cellular response to spermine oxidation products, Free Radical Biology and Medicine, vol.20, issue.5, p.649, 1996.
DOI : 10.1016/0891-5849(95)02149-3

S. Sharmin, K. Sakata, K. Kashiwagi, S. Ueda, S. Iwasaki et al., Polyamine Cytotoxicity in the Presence of Bovine Serum Amine Oxidase, Biochemical and Biophysical Research Communications, vol.282, issue.1, p.228, 2001.
DOI : 10.1006/bbrc.2001.4569

E. Agostinelli, B. Riccio, J. Mucigrosso, O. Befani, and B. , Mondov?, in: Perspectives in polyamine research, pp.17-19, 1988.

V. M. Platt and F. C. Szoka, Anticancer Therapeutics: Targeting Macromolecules and Nanocarriers to Hyaluronan or CD44, a Hyaluronan Receptor, Molecular Pharmaceutics, vol.5, issue.4, p.474, 2008.
DOI : 10.1021/mp800024g

R. Marhaba and M. Zoller, CD44 in Cancer Progression: Adhesion, Migration and Growth Regulation, Journal of Molecular Histology, vol.35, issue.3, p.211, 2004.
DOI : 10.1023/B:HIJO.0000032354.94213.69

T. Nakai, T. Hirakura, Y. Sakurai, T. Shimoboji, M. Ishigai et al., Injectable Hydrogel for Sustained Protein Release by Salt-Induced Association of Hyaluronic Acid Nanogel, Macromolecular Bioscience, vol.119, issue.4, p.475, 2012.
DOI : 10.1002/mabi.201100352

P. Turini, S. Sabatini, O. Befani, F. Chimenti, C. Casanova et al., Purification of bovine plasma amine oxidase, Analytical Biochemistry, vol.125, issue.2, p.294, 1982.
DOI : 10.1016/0003-2697(82)90009-4

G. D. Arrigo, C. Di-meo, E. Gaucci, S. Chichiarelli, T. Coviello et al., Self-assembled gellan-based nanohydrogels as a tool for prednisolone delivery, Soft Matter, vol.267, issue.45, p.11557, 2012.
DOI : 10.1155/2010/906936

N. S. Emiramoth, C. Di-meo, F. Zouhiri, F. Say¨dsay¨d-hassane, S. Valetti et al., Self-Assembled Squalenoylated Penicillin Bioconjugates: An Original Approach for the Treatment of Intracellular Infections, ACS Nano, vol.6, issue.5, p.3820, 2012.
DOI : 10.1021/nn204928v

R. Stevanato, B. Mondov?, S. Sabatini, and A. Rigo, Spectrophotometric assay for total polyamines by immobilized amine oxidases, Analytica Chimica Acta, vol.237, p.391, 1990.
DOI : 10.1016/S0003-2670(00)83942-2

K. Akiyoshi, S. Kobayashi, S. Shichibe, D. Mix, M. Baudys et al., Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilization of insulin, Journal of Controlled Release, vol.54, issue.3, p.313, 1998.
DOI : 10.1016/S0168-3659(98)00017-0

F. Leonelli, A. L. Bella, A. Francescangeli, R. Joudioux, A. L. Capodilupo et al., A New and Simply Available Class of Hydrosoluble Bioconjugates by Coupling Paclitaxel to Hyaluronic Acid through a 4-Hydroxybutanoic Acid Derived Linker, Helvetica Chimica Acta, vol.12, issue.4, p.154, 2005.
DOI : 10.1002/hlca.200490289

K. Akiyoshi, S. Deguchi, H. Tajima, T. Nishikawa, and J. Sunamoto, Microscopic Structure and Thermoresponsiveness of a Hydrogel Nanoparticle by Self-Assembly of a Hydrophobized Polysaccharide, Macromolecules, vol.30, issue.4, p.857, 1997.
DOI : 10.1021/ma960786e

J. W. Yoo, E. Chambers, and S. Mitragotri, Factors that Control the Circulation Time of Nanoparticles in Blood: Challenges, Solutions and Future Prospects, Current Pharmaceutical Design, vol.16, issue.21, p.2298, 2010.
DOI : 10.2174/138161210791920496

G. S. Manning, Polyelectrolytes, Annual Review of Physical Chemistry, vol.23, issue.1, p.117, 1972.
DOI : 10.1146/annurev.pc.23.100172.001001

H. Jans, K. Jans, T. Stakenborg, B. Van-de-broek, L. Lagae et al., Impact of pre-concentration to covalently biofunctionalize suspended nanoparticles, Nanotechnology, vol.21, issue.34, p.345102, 2010.
DOI : 10.1088/0957-4484/21/34/345102