T. Bliss and G. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature, vol.361, issue.6407, pp.31-39, 1993.
DOI : 10.1038/361031a0

P. Churchland and T. Sejinowski, The computational brain, 1992.

N. Schweighofer, K. Doya, and S. Kuroda, Cerebellar aminergic neuromodulation: towards a functional understanding, Brain Research Reviews, vol.44, issue.2-3, pp.103-116, 2004.
DOI : 10.1016/j.brainresrev.2003.10.004

E. Moser, K. Krobert, M. Moser, and R. Morris, Impaired Spatial Learning after Saturation of Long-Term Potentiation, Science, vol.281, issue.5385, pp.2038-2042, 1998.
DOI : 10.1126/science.281.5385.2038

D. Angelo, E. , D. Zeeuw, and C. , Timing and plasticity in the cerebellum: focus on the granular layer, Trends Neurosci, vol.32, pp.30-40, 2009.

D. Angelo, E. Mazzarello, P. Prestori, F. Mapelli, J. Solinas et al., The cerebellar network: From structure to function and dynamics, Brain Research Reviews, vol.66, issue.1-2, pp.5-15, 2011.
DOI : 10.1016/j.brainresrev.2010.10.002

C. Hansel, D. Linden, D. Angelo, and E. , Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum, Nat Neurosci, vol.4, pp.467-475, 2001.

D. Marr, A theory of cerebellar cortex, The Journal of Physiology, vol.202, issue.2, pp.437-470, 1969.
DOI : 10.1113/jphysiol.1969.sp008820

P. Dean and J. Porrill, Evaluating the adaptive-filter model of the cerebellum, The Journal of Physiology, vol.2, issue.14, 2011.
DOI : 10.1113/jphysiol.2010.201574

N. Schweighofer, K. Doya, and F. Lay, Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control, Neuroscience, vol.103, issue.1, pp.35-50, 2001.
DOI : 10.1016/S0306-4522(00)00548-0

J. Dani and D. Bertrand, Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System, Annual Review of Pharmacology and Toxicology, vol.47, issue.1, pp.699-729, 2007.
DOI : 10.1146/annurev.pharmtox.47.120505.105214

S. Hirano, H. Shinotoh, K. Arai, A. Aotsuka, and F. Yasuno, PET study of brain acetylcholinesterase in cerebellar degenerative disorders, Movement Disorders, vol.47, issue.8, pp.1154-1160, 2008.
DOI : 10.1002/mds.22056

U. Rub, E. Brunt, and T. Deller, New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado???Joseph disease), Current Opinion in Neurology, vol.21, issue.2, pp.111-116, 2008.
DOI : 10.1097/WCO.0b013e3282f7673d

C. Martin-ruiz, M. Lee, R. Perry, M. Baumann, and J. Court, Molecular analysis of nicotinic receptor expression in autism, Molecular Brain Research, vol.123, issue.1-2, pp.81-90, 2004.
DOI : 10.1016/j.molbrainres.2004.01.003

P. Seguela, J. Wadiche, K. Dineley-miller, J. Dani, and J. Patrick, Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium, J Neurosci, vol.13, pp.596-604, 1993.

E. Dominguez-del-toro, J. Juiz, F. Smillie, J. Lindstrom, and M. Criado, Expression of ?? 7 neuronal nicotinic receptors during postnatal development of the rat cerebellum, Developmental Brain Research, vol.98, issue.1, pp.125-133, 1997.
DOI : 10.1016/S0165-3806(96)00185-X

J. Turner and K. Kellar, Nicotinic Cholinergic Receptors in the Rat Cerebellum: Multiple Heteromeric Subtypes, Journal of Neuroscience, vol.25, issue.40, pp.9258-9265, 2005.
DOI : 10.1523/JNEUROSCI.2112-05.2005

R. Gray, A. Rajan, K. Radcliffe, M. Yakehiro, and J. Dani, Hippocampal synaptic transmission enhanced by low concentrations of nicotine, Nature, vol.383, issue.6602, pp.713-716, 1996.
DOI : 10.1038/383713a0

D. Ji, R. Lape, and J. Dani, Timing and Location of Nicotinic Activity Enhances or Depresses Hippocampal Synaptic Plasticity, Neuron, vol.31, issue.1, pp.131-141, 2001.
DOI : 10.1016/S0896-6273(01)00332-4

G. Sharma and S. Vijayaraghavan, Modulation of Presynaptic Store Calcium Induces Release of Glutamate and Postsynaptic Firing, Neuron, vol.38, issue.6, pp.929-939, 2003.
DOI : 10.1016/S0896-6273(03)00322-2

K. Radcliffe and J. Dani, Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission, J Neurosci, vol.18, pp.7075-7083, 1998.

L. Reno, W. Zago, and R. Markus, Release of [3h]-l-glutamate by stimulation of nicotinic acetylcholine receptors in rat cerebellar slices, Neuroscience, vol.124, issue.3, pp.647-653, 2004.
DOI : 10.1016/j.neuroscience.2003.12.023

J. Fisher and J. Dani, Nicotinic receptors on hippocampal cultures can increase synaptic glutamate currents while decreasing the NMDA-receptor component, Neuropharmacology, vol.39, issue.13, pp.2756-2769, 2000.
DOI : 10.1016/S0028-3908(00)00102-7

R. Giniatullin, A. Nistri, and J. Yakel, Desensitization of nicotinic ACh receptors: shaping cholinergic signaling, Trends in Neurosciences, vol.28, issue.7, pp.371-378, 2005.
DOI : 10.1016/j.tins.2005.04.009

D. Mcgehee, M. Heath, S. Gelber, P. Devay, and L. Role, Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors, Science, vol.269, issue.5231, pp.1692-1696, 1995.
DOI : 10.1126/science.7569895

S. Matsuyama, A. Matsumoto, T. Enomoto, and T. Nishizaki, Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus, European Journal of Neuroscience, vol.37, issue.10, pp.3741-3747, 2000.
DOI : 10.1046/j.1460-9568.2000.00259.x

J. Buccafusco, S. Letchworth, M. Bencherif, and P. Lippiello, Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic???pharmacodynamic discordance, Trends in Pharmacological Sciences, vol.26, issue.7, pp.352-360, 2005.
DOI : 10.1016/j.tips.2005.05.007

P. Welsby, M. Rowan, and R. Anwyl, Nicotinic receptor-mediated enhancement of long-term potentiation involves activation of metabotropic glutamate receptors and ryanodine-sensitive calcium stores in the dentate gyrus, European Journal of Neuroscience, vol.12, issue.7, 2006.
DOI : 10.1111/j.1460-9568.2006.05187.x

B. Wang, W. Liao, C. Chang, and S. Wang, Facilitation of glutamate release by nicotine involves the activation of a Ca2+/calmodulin signaling pathway in rat prefrontal cortex nerve terminals, Synapse, vol.20, issue.8, pp.491-501, 2006.
DOI : 10.1002/syn.20267

Z. Gu and J. Yakel, Timing-Dependent Septal Cholinergic Induction of Dynamic Hippocampal Synaptic Plasticity, Neuron, vol.71, issue.1, pp.155-165, 2011.
DOI : 10.1016/j.neuron.2011.04.026

B. Hunter, C. De-fiebre, R. Papke, W. Kem, and E. Meyer, A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus, Neuroscience Letters, vol.168, issue.1-2, pp.130-134, 1994.
DOI : 10.1016/0304-3940(94)90433-2

S. Nakauchi and K. Sumikawa, Endogenously released ACh and exogenous nicotine differentially facilitate long-term potentiation induction in the hippocampal CA1 region of mice, European Journal of Neuroscience, vol.579, issue.Pt 3, pp.1381-1395, 2012.
DOI : 10.1111/j.1460-9568.2012.08056.x

D. Angelo, E. , D. Filippi, G. Rossi, P. Taglietti et al., Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors., The Journal of Physiology, vol.484, issue.2, pp.397-413, 1995.
DOI : 10.1113/jphysiol.1995.sp020673

K. Brown, D. Comalli, M. Biasi, and D. Woodruff-pak, Trace eyeblink conditioning is impaired in a7 but not in b2 nicotinic acetylcholine receptor knockout mice, Front Behav Neurosci, vol.4, p.166, 2010.

J. Young, J. Meves, I. Tarantino, S. Caldwell, and M. Geyer, Delayed procedural learning in alpha7-nicotinic acetylcholine receptor knockout mice, Genes Brain Behav, 2011.

S. Wonnacott, Presynaptic nicotinic ACh receptors, Trends in Neurosciences, vol.20, issue.2, pp.92-98, 1997.
DOI : 10.1016/S0166-2236(96)10073-4

C. Saviane and R. Silver, Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse, Nature, vol.32, issue.7079, pp.983-987, 2006.
DOI : 10.1038/nature04509

J. Dittman, A. Kreitzer, and W. Regehr, Interplay between facilitation, depression, and residual calcium at three presynaptic terminals, J Neurosci, vol.20, pp.1374-1385, 2000.

T. Nieus, E. Sola, J. Mapelli, E. Saftenku, and P. Rossi, LTP Regulates Burst Initiation and Frequency at Mossy Fiber-Granule Cell Synapses of Rat Cerebellum: Experimental Observations and Theoretical Predictions, Journal of Neurophysiology, vol.95, issue.2, pp.686-699, 2006.
DOI : 10.1152/jn.00696.2005

E. Sola, F. Prestori, P. Rossi, V. Taglietti, D. Angelo et al., Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum, The Journal of Physiology, vol.23, issue.3, pp.843-861, 2004.
DOI : 10.1113/jphysiol.2003.060285

C. Wang, H. Wang, H. Xie, and G. Pitt, Ca2+/CaM Controls Ca2+-Dependent Inactivation of NMDA Receptors by Dimerizing the NR1 C Termini, Journal of Neuroscience, vol.28, issue.8, pp.1865-1870, 2008.
DOI : 10.1523/JNEUROSCI.5417-07.2008

D. Errico, A. Prestori, F. , D. Angelo, and E. , Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input, J Physiol, vol.587, pp.5843-5857, 2009.

D. Gall, F. Prestori, E. Sola, D. Errico, A. Roussel et al., Intracellular Calcium Regulation by Burst Discharge Determines Bidirectional Long-Term Synaptic Plasticity at the Cerebellum Input Stage, Journal of Neuroscience, vol.25, issue.19, pp.4813-4822, 2005.
DOI : 10.1523/JNEUROSCI.0410-05.2005

J. Mapelli, D. Angelo, and E. , The Spatial Organization of Long-Term Synaptic Plasticity at the Input Stage of Cerebellum, Journal of Neuroscience, vol.27, issue.6, pp.1285-1296, 2007.
DOI : 10.1523/JNEUROSCI.4873-06.2007

S. Fujii, J. Z. Morita, N. Sumikawa, and K. , Acute and chronic nicotine exposure differentially facilitate the induction of LTP, Brain Research, vol.846, issue.1, pp.137-143, 1999.
DOI : 10.1016/S0006-8993(99)01982-4

J. Ward, V. Cockcroft, G. Lunt, F. Smillie, and S. Wonnacott, Methyllycaconitine: a selective probe for neuronal ??-bungarotoxin binding sites, FEBS Letters, vol.261, issue.1-2, pp.45-48, 1990.
DOI : 10.1016/0014-5793(90)81231-C

V. Gerzanich, X. Peng, F. Wang, G. Wells, and R. Anand, Comparative pharmacology of epibatidine: a potent agonist for neuronal nicotinic acetylcholine receptors, Mol Pharmacol, vol.48, pp.774-782, 1995.

C. Andreescu, F. Prestori, F. Brandalise, D. Errico, A. et al., NR2A subunit of the N-methyl d-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning, Neuroscience, vol.176, pp.274-283, 2011.
DOI : 10.1016/j.neuroscience.2010.12.024

E. Bienenstock, L. Cooper, and P. Munro, THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY: ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL CORTEX, J Neurosci, vol.2, pp.32-48, 1982.
DOI : 10.1142/9789812795885_0006

A. Irving, G. Collingridge, and J. Schofield, L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities, Cell Calcium, vol.13, issue.5, pp.293-301, 1992.
DOI : 10.1016/0143-4160(92)90064-Y

J. Mapelli, D. Gandolfi, D. Angelo, and E. , Combinatorial Responses Controlled by Synaptic Inhibition in the Cerebellum Granular Layer, Journal of Neurophysiology, vol.103, issue.1, pp.250-261, 2010.
DOI : 10.1152/jn.00642.2009

J. Mapelli, D. Gandolfi, D. Angelo, and E. , High-pass filtering and dynamic gain regulation enhance vertical bursts transmission along the mossy fiber pathway of cerebellum, Frontiers in Cellullar Neuroscience, vol.4, p.14, 2010.
DOI : 10.3389/fncel.2010.00014

L. Roggeri, B. Rivieccio, P. Rossi, D. Angelo, and E. , Tactile Stimulation Evokes Long-Term Synaptic Plasticity in the Granular Layer of Cerebellum, Journal of Neuroscience, vol.28, issue.25, pp.6354-6359, 2008.
DOI : 10.1523/JNEUROSCI.5709-07.2008

J. Morissette and J. Bower, Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation, Experimental Brain Research, vol.109, issue.2, pp.240-250, 1996.
DOI : 10.1007/BF00231784

M. Schonewille, Z. Gao, H. Boele, M. Veloz, and W. Amerika, Reevaluating the Role of LTD in Cerebellar Motor Learning, Neuron, vol.70, issue.1, pp.43-50, 2011.
DOI : 10.1016/j.neuron.2011.02.044

C. Andreescu, F. Prestori, F. Brandalise, D. Errico, A. et al., NR2A subunit of the N-methyl d-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning, Neuroscience, vol.176, pp.274-283, 2011.
DOI : 10.1016/j.neuroscience.2010.12.024

L. Cathala, S. Brickley, S. Cull-candy, and M. Farrant, Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse, J Neurosci. United States, pp.6074-6085, 2003.

C. Lena and J. Changeux, Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus, J Neurosci, vol.17, pp.576-585, 1997.

E. Rancz, T. Ishikawa, I. Duguid, P. Chadderton, and S. Mahon, High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons, Nature, vol.52, issue.7173, pp.1245-1248, 2007.
DOI : 10.1038/nprot.2006.312

E. Moser and M. Moser, Is learning blocked by saturation of synaptic weights in the hippocampus?, Neuroscience & Biobehavioral Reviews, vol.23, issue.5, pp.661-672, 1999.
DOI : 10.1016/S0149-7634(98)00060-8

M. Otnaess, V. Brun, M. Moser, and E. Moser, Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation, J Neurosci, vol.19, p.49, 1999.

S. Jones, S. Sudweeks, and J. Yakel, Nicotinic receptors in the brain: correlating physiology with function, Trends in Neurosciences, vol.22, issue.12, pp.555-561, 1999.
DOI : 10.1016/S0166-2236(99)01471-X

K. Maloney, L. Mainville, and B. Jones, Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery, J Neurosci, vol.19, pp.3057-3072, 1999.

E. Mclachlan, The statistics of transmitter release at chemical synapses, Int Rev Physiol, vol.17, pp.49-117, 1978.

J. Clements and R. Silver, Unveiling synaptic plasticity: a new graphical and analytical approach, Trends in Neurosciences, vol.23, issue.3, pp.105-113, 2000.
DOI : 10.1016/S0166-2236(99)01520-9

L. Mapelli, P. Rossi, T. Nieus, D. Angelo, and E. , Tonic Activation of GABAB Receptors Reduces Release Probability at Inhibitory Connections in the Cerebellar Glomerulus, Journal of Neurophysiology, vol.101, issue.6, pp.3089-3099, 2009.
DOI : 10.1152/jn.91190.2008

J. Clements, Variance???mean analysis: a simple and reliable approach for investigating synaptic transmission and modulation, Journal of Neuroscience Methods, vol.130, issue.2, pp.115-125, 2003.
DOI : 10.1016/j.jneumeth.2003.09.019

J. Bower and D. Woolston, Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex, J Neurophysiol, vol.49, pp.745-766, 1983.

H. Lu, M. Hartmann, and J. Bower, Correlations Between Purkinje Cell Single-Unit Activity and Simultaneously Recorded Field Potentials in the Immediately Underlying Granule Cell Layer, Journal of Neurophysiology, vol.94, issue.3, pp.1849-1860, 2005.
DOI : 10.1152/jn.01275.2004

N. Moser, N. Mechawar, I. Jones, A. Gochberg-sarver, and A. Orr-urtreger, Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures, Journal of Neurochemistry, vol.22, issue.2, pp.479-492, 2007.
DOI : 10.1111/j.1471-4159.2007.04498.x

URL : https://hal.archives-ouvertes.fr/pasteur-00161322

J. Mielke and G. Mealing, Cellular distribution of the nicotinic acetylcholine receptor alpha7 subunit in rat hippocampus, Neurosci Res. Ireland, pp.296-306, 2009.

M. Schonewille, C. Luo, T. Ruigrok, J. Voogd, and M. Schmolesky, Zonal organization of the mouse flocculus: Physiology, input, and output, The Journal of Comparative Neurology, vol.148, issue.4, pp.670-682, 2006.
DOI : 10.1002/cne.21036

M. Schonewille, S. Khosrovani, B. Winkelman, F. Hoebeek, D. Jeu et al., Purkinje cells in awake behaving animals operate at the upstate membrane potential, Nature Neuroscience, vol.68, issue.4, pp.459-461, 2006.
DOI : 10.1038/nn0406-459