A. Giese, R. Bjerkvig, M. Berens, and M. Westphal, Cost of Migration: Invasion of Malignant Gliomas and Implications for Treatment, Journal of Clinical Oncology, vol.21, issue.8, pp.1624-1636, 2003.
DOI : 10.1200/JCO.2003.05.063

P. Wen and S. Kesari, Malignant Gliomas in Adults, New England Journal of Medicine, vol.359, issue.5, pp.492-507, 2008.
DOI : 10.1056/NEJMra0708126

D. Markovic, R. Glass, M. Synowitz, N. Rooijen, and H. Kettenmann, Microglia Stimulate the Invasiveness of Glioma Cells by Increasing the Activity of Metalloprotease-2, Journal of Neuropathology & Experimental Neurology, vol.64, issue.9, pp.754-762, 2005.
DOI : 10.1097/01.jnen.0000178445.33972.a9

A. Wesolowska, A. Kwiatkowska, L. Slomnicki, M. Dembinski, A. Master et al., Microglia-derived TGF-?? as an important regulator of glioblastoma invasion???an inhibition of TGF-??-dependent effects by shRNA against human TGF-?? type II receptor, Oncogene, vol.29, issue.7, pp.918-930, 2008.
DOI : 10.1016/j.neuint.2005.05.010

N. Charles, E. Holland, R. Gilbertson, R. Glass, and H. Kettenmann, The brain tumor microenvironment, Glia, vol.162, issue.3, pp.502-514, 2012.
DOI : 10.1002/glia.21264

T. Takano, J. Lin, G. Arcuino, Q. Gao, J. Yang et al., Glutamate release promotes growth of malignant gliomas, Nature Medicine, vol.7, issue.9, pp.1010-1015, 2001.
DOI : 10.1038/nm0901-1010

E. Andaloussi, A. Lesniak, and M. , CD4+CD25+FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas, Journal of Neuro-Oncology, vol.6, issue.3, pp.145-152, 2007.
DOI : 10.1007/s11060-006-9314-y

S. Coniglio, E. Eugenin, K. Dobrenis, E. Stanley, B. West et al., Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling, Mol Med, vol.18, pp.519-527, 2012.

S. Rempel, S. Dudas, S. Ge, and J. Gutiérrez, Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma, Clin Cancer Res, vol.6, pp.102-111, 2000.

J. Rubin, A. Kung, R. Klein, J. Chan, Y. Sun et al., A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13513-13518, 2003.
DOI : 10.1073/pnas.2235846100

X. Bian, S. Yang, J. Chen, Y. Ping, X. Zhou et al., PREFERENTIAL EXPRESSION OF CHEMOKINE RECEPTOR CXCR4 BY HIGHLY MALIGNANT HUMAN GLIOMAS AND ITS ASSOCIATION WITH POOR PATIENT SURVIVAL, Neurosurgery, vol.61, issue.3, pp.570-578, 2007.
DOI : 10.1227/01.NEU.0000290905.53685.A2

D. Zagzag, M. Esencay, O. Mendez, H. Yee, I. Smirnova et al., Hypoxia- and Vascular Endothelial Growth Factor-Induced Stromal Cell-Derived Factor-1??/CXCR4 Expression in Glioblastomas, The American Journal of Pathology, vol.173, issue.2, pp.545-560, 2008.
DOI : 10.2353/ajpath.2008.071197

M. Sciaccaluga, B. Fioretti, L. Catacuzzeno, F. Pagani, C. Bertollini et al., CXCL12-induced glioblastoma cell migration requires intermediate conductance Ca2+-activated K+ channel activity, AJP: Cell Physiology, vol.299, issue.1, pp.175-184, 2010.
DOI : 10.1152/ajpcell.00344.2009

K. Kunzelmann, Ion Channels and Cancer, Journal of Membrane Biology, vol.278, issue.Pt 2, pp.159-173, 2005.
DOI : 10.1007/s00232-005-0781-4

A. Arcangeli, O. Crociani, E. Lastraioli, A. Masi, S. Pillozzi et al., Targeting Ion Channels in Cancer: A Novel Frontier in Antineoplastic Therapy, Current Medicinal Chemistry, vol.16, issue.1, pp.66-93, 2009.
DOI : 10.2174/092986709787002835

V. Cuddapah and H. Sontheimer, Ion channels and tranporters in cancer. 2. Ion channels and the control of cancer cell migration, AJP: Cell Physiology, vol.301, issue.3, pp.541-549, 2011.
DOI : 10.1152/ajpcell.00102.2011

V. Cuddapah, K. Turner, S. Seifert, and H. Sontheimer, Bradykinin-Induced Chemotaxis of Human Gliomas Requires the Activation of KCa3.1 and ClC-3, Journal of Neuroscience, vol.33, issue.4, pp.1427-1440, 2013.
DOI : 10.1523/JNEUROSCI.3980-12.2013

M. Ifuku, K. Färber, Y. Okuno, Y. Yamakawa, T. Miyamoto et al., Bradykinin-Induced Microglial Migration Mediated by B1-Bradykinin Receptors Depends on Ca2+ Influx via Reverse-Mode Activity of the Na+/Ca2+ Exchanger, Journal of Neuroscience, vol.27, issue.48, pp.13065-13073, 2007.
DOI : 10.1523/JNEUROSCI.3467-07.2007

T. Ishii, C. Silvia, B. Hirschberg, C. Bond, J. Adelman et al., A human intermediate conductance calcium-activated potassium channel, Proceedings of the National Academy of Sciences, vol.94, issue.21, pp.11651-11656, 1997.
DOI : 10.1073/pnas.94.21.11651

B. Fioretti, E. Castigli, I. Calzuola, A. Harper, F. Franciolini et al., NPPB block of the intermediate-conductance Ca2+-activated K+ channel, European Journal of Pharmacology, vol.497, issue.1, pp.1-6, 2004.
DOI : 10.1016/j.ejphar.2004.06.034

B. Fioretti, E. Castigli, M. Micheli, R. Bova, M. Sciaccaluga et al., Expression and Modulation of the Intermediate- Conductance Ca<sup>2+</sup>-Activated K<sup>+</sup> Channel in Glioblastoma GL-15 Cells, Cellular Physiology and Biochemistry, vol.18, issue.1-3, pp.47-56, 2006.
DOI : 10.1159/000095135

A. Weaver, V. Bomben, and H. Sontheimer, Expression and function of calcium-activated potassium channels in human glioma cells, Glia, vol.298, issue.3, pp.223-233, 2006.
DOI : 10.1002/glia.20364

M. Khalid, S. Shibata, and T. Hiura, Effects of clotrimazole on the growth, morphological characteristics, and cisplatin sensitivity of human glioblastoma cells in vitro, Journal of Neurosurgery, vol.90, issue.5, pp.918-927, 1999.
DOI : 10.3171/jns.1999.90.5.0918

H. Liu, Y. Li, and K. Raisch, Clotrimazole induces a late G1 cell cycle arrest and sensitizes glioblastoma cells to radiation in vitro, Anti-Cancer Drugs, vol.21, issue.9, pp.841-849, 2010.
DOI : 10.1097/CAD.0b013e32833e8022

M. Khalid, Y. Tokunaga, A. Caputy, and E. Walters, Inhibition of tumor growth and prolonged survival of rats with intracranial gliomas following administration of clotrimazole, Journal of Neurosurgery, vol.103, issue.1, pp.79-86, 2005.
DOI : 10.3171/jns.2005.103.1.0079

H. Wulff, M. Miller, W. Hansel, S. Grissmer, M. Cahalan et al., Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: A potential immunosuppressant, Proceedings of the National Academy of Sciences, vol.97, issue.14, pp.8151-8156, 2000.
DOI : 10.1073/pnas.97.14.8151

R. Köhler, H. Wulff, I. Eichler, M. Kneifel, D. Neumann et al., Blockade of the Intermediate-Conductance Calcium-Activated Potassium Channel as a New Therapeutic Strategy for Restenosis, Circulation, vol.108, issue.9, pp.1119-1125, 2003.
DOI : 10.1161/01.CIR.0000086464.04719.DD

Y. Chen, G. Raman, S. Bodendiek, O. Donnell, M. Wulff et al., The KCa3.1 Blocker TRAM-34 Reduces Infarction and Neurological Deficit in a Rat Model of Ischemia/Reperfusion Stroke, Journal of Cerebral Blood Flow & Metabolism, vol.95, issue.12, pp.2363-2374, 2011.
DOI : 10.1038/nm.1999

E. Reich, L. Cui, L. Yang, C. Pugliese-sivo, A. Golovko et al., Blocking ion channel KCNN4 alleviates the symptoms of experimental autoimmune encephalomyelitis in mice, European Journal of Immunology, vol.151, issue.4
DOI : 10.1002/eji.200425954

I. Grgic, P. Heinau, H. Si, S. Brakemeier, J. Hoyer et al., Selective Blockade of the Intermediate-Conductance Ca2+-Activated K+ Channel Suppresses Proliferation of Microvascular and Macrovascular Endothelial Cells and Angiogenesis In Vivo, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.4, pp.704-709, 2005.
DOI : 10.1161/01.ATV.0000156399.12787.5c

K. Toyama, H. Wulff, K. Chandy, P. Azam, G. Raman et al., The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans, Journal of Clinical Investigation, vol.118, issue.9, pp.3025-3037, 2008.
DOI : 10.1172/JCI30836DS1

P. Girodet, A. Ozier, G. Carvalho, O. Ilina, O. Ousova et al., Channel???3.1 Blocker TRAM-34 Attenuates Airway Remodeling and Eosinophilia in a Murine Asthma Model, American Journal of Respiratory Cell and Molecular Biology, vol.48, issue.2, pp.212-219, 2013.
DOI : 10.1165/rcmb.2012-0103OC

J. Guillamo, F. Lisovoski, C. Christov, L. Guérinel, C. Defer et al., Migration pathways of human glioblastoma cells xenografted into the immunosuppressed rat brain, Journal of Neuro-Oncology, vol.52, issue.3, pp.205-215, 2001.
DOI : 10.1023/A:1010620420241

D. Hoelzinger, T. Demuth, and M. Berens, Autocrine Factors That Sustain Glioma Invasion and Paracrine Biology in the Brain Microenvironment, JNCI Journal of the National Cancer Institute, vol.99, issue.21, pp.1583-1593, 2007.
DOI : 10.1093/jnci/djm187

J. Kroonen, J. Nassen, Y. Boulanger, F. Provenzano, V. Capraro et al., Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection, International Journal of Cancer, vol.444, issue.3, pp.574-585, 2011.
DOI : 10.1002/ijc.25709

V. Kaushal, P. Koeberle, Y. Wang, and L. Schlichter, The Ca2+-Activated K+ Channel KCNN4/KCa3.1 Contributes to Microglia Activation and Nitric Oxide-Dependent Neurodegeneration, Journal of Neuroscience, vol.27, issue.1, pp.234-244, 2007.
DOI : 10.1523/JNEUROSCI.3593-06.2007

S. Marrelli, M. Eckmann, and M. Hunte, channels in cerebral EDHF-mediated dilations, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.4, pp.1590-1599, 2003.
DOI : 10.1152/ajpheart.00376.2003

C. Cronin, W. Gluba, and H. Scrable, The lac operator-repressor system is functional in the mouse, Genes & Development, vol.15, issue.12, pp.1506-1517, 2001.
DOI : 10.1101/gad.892001

J. Wu, H. Hsueh, W. Huang, H. Liu, H. Leung et al., The inducible lactose operator-repressor system is functional in the whole animal, DNA Cell Biol, vol.16, pp.17-22, 1997.

J. Lee, A. Borboa, A. Baird, and B. Eliceiri, Non-invasive quantification of brain tumor-induced astrogliosis, BMC Neuroscience, vol.12, issue.1, p.19, 2011.
DOI : 10.1186/1471-2202-12-9

P. Ruggieri, G. Mangini, B. Fioretti, L. Catacuzzeno, R. Puca et al., The Inhibition of KCa3.1 Channels Activity Reduces Cell Motility in Glioblastoma Derived Cancer Stem Cells, PLoS ONE, vol.7, issue.10, p.47825, 2012.
DOI : 10.1371/journal.pone.0047825.s001

S. Watkins and H. Sontheimer, Hydrodynamic Cellular Volume Changes Enable Glioma Cell Invasion, Journal of Neuroscience, vol.31, issue.47, pp.17250-17259, 2011.
DOI : 10.1523/JNEUROSCI.3938-11.2011

L. Catacuzzeno, F. Aiello, B. Fioretti, L. Sforna, E. Castigli et al., Serum-activated K and Cl currents underlay U87-MG glioblastoma cell migration, Journal of Cellular Physiology, vol.125, issue.7, pp.1926-1933, 2011.
DOI : 10.1002/jcp.22523

F. Iskandar, I. Abdullaev, A. Rudkouskaya, A. Mongin, and Y. Kuo, Calcium-activated potassium channels BK and IK1 are functionally expressed in human gliomas but do not regulate cell proliferation, PLoS ONE, vol.5, p.12304, 2010.

I. Maezawa, D. Jenkins, B. Jin, and H. Wulff, Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer???s Disease, International Journal of Alzheimer's Disease, vol.95, issue.11, p.868972, 2011.
DOI : 10.1182/blood-2007-08-110098

T. Schilling, C. Stock, A. Schwab, and C. Eder, Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration, European Journal of Neuroscience, vol.27, issue.6, pp.1469-1474, 2004.
DOI : 10.1002/glia.10265

R. Khanna, L. Roy, X. Zhu, and L. Schlichter, K þ channels and the microglial respiratory burst, Am J Physiol Cell Physiol, vol.280, pp.796-806, 2001.

S. Hussain, D. Yang, D. Suki, K. Aldape, E. Grimm et al., The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses, Neuro-Oncology, vol.8, issue.3, pp.261-279, 2006.
DOI : 10.1215/15228517-2006-008

J. Schartner, A. Hagar, M. Van-handel, L. Zhang, N. Nadkarni et al., Impaired capacity for upregulation of MHC class II in tumor-associated microglia, Glia, vol.25, issue.4, pp.279-285, 2005.
DOI : 10.1002/glia.20201

W. Li and M. Graeber, The molecular profile of microglia under the influence of glioma, Neuro-Oncology, vol.14, issue.8, pp.958-978, 2012.
DOI : 10.1093/neuonc/nos116

A. Wu, J. Wei, L. Kong, Y. Wang, W. Priebe et al., Glioma cancer stem cells induce immunosuppressive macrophages/microglia, Neuro-Oncology, vol.12, issue.11, pp.1113-1125, 2010.
DOI : 10.1093/neuonc/noq082

Y. Komohara, K. Ohnishi, J. Kuratsu, and M. Takeya, Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas, The Journal of Pathology, vol.179, issue.1, pp.15-24, 2008.
DOI : 10.1002/path.2370

D. Bouhy, N. Ghasemlou, and S. Lively, Inhibition of the Ca2+-Dependent K+ Channel, KCNN4/KCa3.1, Improves Tissue Protection and Locomotor Recovery after Spinal Cord Injury, Journal of Neuroscience, vol.31, issue.45, pp.16298-16308, 2011.
DOI : 10.1523/JNEUROSCI.0047-11.2011

O. Becher, D. Hambardzumyan, E. Fomchenko, H. Momota, L. Mainwaring et al., Gli Activity Correlates with Tumor Grade in Platelet-Derived Growth Factor-Induced Gliomas, Cancer Research, vol.68, issue.7, pp.2241-2249, 2008.
DOI : 10.1158/0008-5472.CAN-07-6350

C. Lauro, R. Cipriani, M. Catalano, F. Trettel, G. Chece et al., Adenosine A1 Receptors and Microglial Cells Mediate CX3CL1-Induced Protection of Hippocampal Neurons Against Glu-Induced Death, Neuropsychopharmacology, vol.104, issue.7, pp.1550-1559, 2010.
DOI : 10.1016/S0165-5728(01)00259-4

URL : https://hal.archives-ouvertes.fr/hal-00514619

B. Fioretti, L. Catacuzzeno, L. Sforna, F. Aiello, F. Pagani et al., Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel, AJP: Cell Physiology, vol.297, issue.1, pp.102-110, 2009.
DOI : 10.1152/ajpcell.00354.2008

K. Labuzek, S. Liber, B. Gabryel, J. Adamczyk, and B. Okopien, Metformin increases phagocytosis and acidifies lysosomal/endosomal compartments in AMPK-dependent manner in rat primary microglia, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.279, issue.2, pp.171-186, 2010.
DOI : 10.1007/s00210-009-0477-x

C. Carignani, R. Roncarati, R. Rimini, and G. Terstappen, Pharmacological and molecular characterisation of SK3 channels in the TE671 human medulloblastoma cell line, Brain Research, vol.939, issue.1-2, pp.11-18, 2002.
DOI : 10.1016/S0006-8993(02)02535-0

X. Liu, Y. Chang, P. Reinhart, H. Sontheimer, and Y. Chang, Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells, J Neurosci, vol.22, pp.1840-1849, 2002.

N. Logsdon, J. Kang, J. Togo, E. Christian, and J. Aiyar, A Novel Gene, hKCa4, Encodes the Calcium-activated Potassium Channel in Human T Lymphocytes, Journal of Biological Chemistry, vol.272, issue.52, pp.32723-32726, 1997.
DOI : 10.1074/jbc.272.52.32723