W. Rostène, P. Kitabgi, and S. Parsadaniantz, Chemokines: a new class of neuromodulator?, Nature Reviews Neuroscience, vol.16, issue.11, pp.895-903, 2007.
DOI : 10.1038/nrn2255

R. Le-goazigo, A. Van-steenwinckel, J. Rostène, and W. , Current status of chemokines in the adult CNS, Progress in Neurobiology, vol.104, pp.67-92, 2013.
DOI : 10.1016/j.pneurobio.2013.02.001

L. Harrison, Y. Jiang, S. Chen, Y. Xia, D. Maciejewski et al., Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia, Proceedings of the National Academy of Sciences, vol.95, issue.18, pp.10896-10901, 1998.
DOI : 10.1073/pnas.95.18.10896

K. Hatori, A. Nagai, R. Heisel, J. Ryu, and S. Kim, Fractalkine and fractalkine receptors in human neurons and glial cells, Journal of Neuroscience Research, vol.29, issue.3, pp.418-426, 2002.
DOI : 10.1002/jnr.10304

A. Cardona, E. Pioro, M. Sasse, V. Kostenko, S. Cardona et al., Control of microglial neurotoxicity by the fractalkine receptor, Nature Neuroscience, vol.24, issue.7, pp.917-924, 2006.
DOI : 10.1038/nn1715

S. Jung, J. Aliberti, P. Graemmel, M. Sunshine, G. Kreutzberg et al., Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion, Molecular and Cellular Biology, vol.20, issue.11, pp.4106-4114, 2000.
DOI : 10.1128/MCB.20.11.4106-4114.2000

Y. Wolf, S. Yona, and K. Kim, Jung S: Microglia, seen from the CX3CR1 angle, Front Cell Neurosci, vol.7, p.26, 2013.

P. Hughes, M. Botham, S. Frentzel, A. Mir, and V. Perry, Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS, Glia, vol.29, issue.4, pp.314-327, 2002.
DOI : 10.1002/glia.10037

D. Sunnemark, S. Eltayeb, M. Nilsson, E. Wallström, H. Lassmann et al., (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin, J Neuroinflammation, vol.2, pp.3-117, 2005.

D. Haese, J. Friess, H. Ceyhan, and G. , Therapeutic potential of the chemokine???receptor duo fractalkine/CX3CR1: an update, Expert Opinion on Therapeutic Targets, vol.31, issue.45, pp.613-618, 2012.
DOI : 10.1517/14728222.2012.682574

C. Limatola, C. Lauro, M. Catalano, M. Ciotti, C. Bertollini et al., Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity, Journal of Neuroimmunology, vol.166, issue.1-2, pp.19-28, 2005.
DOI : 10.1016/j.jneuroim.2005.03.023

C. Lauro, D. Angelantonio, S. Cipriani, R. Sobrero, F. Antonilli et al., Activity of Adenosine Receptors Type 1 Is Required for CX3CL1-Mediated Neuroprotection and Neuromodulation in Hippocampal Neurons, The Journal of Immunology, vol.180, issue.11, pp.7590-7596, 2008.
DOI : 10.4049/jimmunol.180.11.7590

C. Lauro, R. Cipriani, M. Catalano, F. Trettel, G. Chece et al., Adenosine A1 Receptors and Microglial Cells Mediate CX3CL1-Induced Protection of Hippocampal Neurons Against Glu-Induced Death, Neuropsychopharmacology, vol.104, issue.7, pp.1550-1559, 2010.
DOI : 10.1016/S0165-5728(01)00259-4

URL : https://hal.archives-ouvertes.fr/hal-00514619

R. Cipriani, P. Villa, G. Chece, C. Lauro, A. Paladini et al., CX3CL1 Is Neuroprotective in Permanent Focal Cerebral Ischemia in Rodents, Journal of Neuroscience, vol.31, issue.45, pp.3-116327, 2011.
DOI : 10.1523/JNEUROSCI.3611-11.2011

C. Bertollini, D. Ragozzino, C. Gross, C. Limatola, and F. Eusebi, Fractalkine/CX3CL1 depresses central synaptic transmission in mouse hippocampal slices, Neuropharmacology, vol.51, issue.4, pp.816-821, 2006.
DOI : 10.1016/j.neuropharm.2006.05.027

L. Maggi, F. Trettel, M. Scianni, C. Bertollini, F. Eusebi et al., LTP impairment by fractalkine/CX(3)CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A(3)R)

A. Macdermott, M. Mayer, G. Westbrook, S. Smith, and J. Barker, NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature, vol.7, issue.6069, pp.519-522, 1986.
DOI : 10.1038/321519a0

S. Cull-candy, S. Brickley, and M. Farrant, NMDA receptor subunits: diversity, development and disease, Current Opinion in Neurobiology, vol.11, issue.3, pp.327-335, 2001.
DOI : 10.1016/S0959-4388(00)00215-4

M. Hollmann and S. Heinemann, Cloned Glutamate Receptors, Annual Review of Neuroscience, vol.17, issue.1, pp.31-108, 1994.
DOI : 10.1146/annurev.ne.17.030194.000335

J. Johnson and P. Ascher, Glycine potentiates the NMDA response in cultured mouse brain neurons, Nature, vol.40, issue.6104, pp.529-531, 1987.
DOI : 10.1038/296357a0

T. Matsui, M. Sekiguchi, A. Hashimoto, U. Tomita, T. Nishikawa et al., Functional Comparison of d-Serine and Glycine in Rodents: The Effect on Cloned NMDA Receptors and the Extracellular Concentration, Journal of Neurochemistry, vol.65, issue.1, pp.454-458, 1995.
DOI : 10.1046/j.1471-4159.1995.65010454.x

T. Papouin, L. Ladépêche, J. Ruel, S. Sacchi, M. Labasque et al., Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists, Cell, vol.150, issue.3, pp.633-646, 2012.
DOI : 10.1016/j.cell.2012.06.029

M. Schell, R. Brady, . Jr, M. Molliver, and S. Snyder, D-serine as a neuromodulator: regional and developmental localization in rat brain glia resemble NMDA receptors, J Neurosci, vol.17, pp.1604-1615, 1997.

S. Wu, A. Bodles, M. Porter, W. Griffin, A. Basile et al., Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide, J Neuroinflammation, vol.110, issue.21, p.108, 2004.

S. Williams, C. Diaz, L. Macnab, R. Sullivan, and D. Pow, Immunocytochemical analysis ofD-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons, Glia, vol.12, issue.4, pp.401-411, 2006.
DOI : 10.1002/glia.20300

J. Sasabe, T. Chiba, M. Yamada, K. Okamoto, I. Nishimoto et al., D-Serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis, The EMBO Journal, vol.1, issue.18, pp.4149-5159, 2007.
DOI : 10.1038/sj.emboj.7601840

W. Wang and S. Barger, Cross-linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species, Journal of Neuroscience Research, vol.278, issue.6, pp.1218-1229, 2012.
DOI : 10.1002/jnr.22832

Y. Hayashi, H. Ishibashi, K. Hashimoto, and H. Nakanishi, Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors, Glia, vol.894, issue.6, pp.660-668, 2006.
DOI : 10.1002/glia.20322

M. Block, L. Zecca, and J. Hong, Microglia-mediated neurotoxicity: uncovering the molecular mechanisms, Nature Reviews Neuroscience, vol.13, issue.1, pp.57-69, 2007.
DOI : 10.1523/JNEUROSCI.4306-04.2005

M. Flavin, G. Zhao, and L. Ho, Microglial tissue plasminogen activator (tPA) triggers neuronal apoptosis in vitro, Glia, vol.48, issue.4, pp.347-354, 2000.
DOI : 10.1002/(SICI)1098-1136(20000215)29:4<347::AID-GLIA5>3.0.CO;2-8

C. Jarvis, Z. Xiong, J. Plant, D. Churchill, W. Lu et al., Neurotrophin modilation of NMDA receptors in cultures murine and isolated rat neurons, J Neurophysiol, vol.78, pp.2363-2371, 1997.

S. Yang, Z. Liu, H. Qiao, W. Zhou, and Y. Zhang, Interleukin-1????enhances NMDA receptor-mediated current but inhibits excitatory synaptic transmission, Brain Research, vol.1034, issue.1-2, pp.172-179, 2005.
DOI : 10.1016/j.brainres.2004.11.018

K. Deiva, T. Geeraerts, H. Salim, P. Leclerc, C. Héry et al., Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation, European Journal of Neuroscience, vol.169, issue.12, pp.3222-3232, 2004.
DOI : 10.1016/S0165-5728(01)00259-4

D. Cook, D. Cook, S. Chen, L. Sullivan, D. Manfra et al., Generation and Analysis of Mice Lacking the Chemokine Fractalkine, Molecular and Cellular Biology, vol.21, issue.9, pp.3159-3165, 2001.
DOI : 10.1128/MCB.21.9.3159-3165.2001

B. Johansson, L. Halldner, T. Dunwiddie, S. Masino, W. Poelchen et al., Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor, Proceedings of the National Academy of Sciences, vol.98, issue.16, pp.9407-9412, 2001.
DOI : 10.1073/pnas.161292398

C. Salvatore, S. Tilley, A. Latour, D. Fletcher, B. Koller et al., Disruption of the A3 Adenosine Receptor Gene in Mice and Its Effect on Stimulated Inflammatory Cells, Journal of Biological Chemistry, vol.275, issue.6, pp.4429-4434, 2000.
DOI : 10.1074/jbc.275.6.4429

J. Chen, Z. Huang, J. Ma, J. Zhu, R. Moratalla et al., A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice

M. Berna and B. Ackermann, Quantification of serine enantiomers in rat brain microdialysate using Marfey's reagent and LC/MS/MS, Journal of Chromatography B, vol.846, issue.1-2, pp.359-363, 2007.
DOI : 10.1016/j.jchromb.2006.08.029

B. Neagu, N. Strominger, and D. Carpenter, Contribution of NMDA receptor-mediated component to the EPSP in mouse Schaffer collateral synapses under single pulse stimulation protocol, Brain Research, vol.1240, pp.54-61, 2008.
DOI : 10.1016/j.brainres.2008.09.007

R. Zucker, Short-Term Synaptic Plasticity, Annual Review of Neuroscience, vol.12, issue.1, pp.13-31, 1989.
DOI : 10.1146/annurev.ne.12.030189.000305

L. Maggi, E. Sola, F. Minneci, L. Magueresse, C. Changeux et al., Persistent decrease in synaptic efficacy induced by nicotine at Schaffer collateral-CA1 synapses in the immature rat hippocampus, The Journal of Physiology, vol.18, issue.3, pp.863-874, 2004.
DOI : 10.1113/jphysiol.2004.067041

URL : https://hal.archives-ouvertes.fr/pasteur-00163488

L. Maggi, M. Scianni, I. Branchi, D. Andrea, I. Lauro et al., CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment, Front Cell Neurosci, vol.5, p.22, 2011.

H. Suzuki, Y. Sugimura, S. Iwama, H. Suzuki, O. Nobuaki et al., Minocycline Prevents Osmotic Demyelination Syndrome by Inhibiting the Activation of Microglia, Journal of the American Society of Nephrology, vol.21, issue.12, pp.2090-2098, 2010.
DOI : 10.1681/ASN.2010040438

J. Yrjanheikki, R. Keinanen, M. Pellikka, T. Hokfelt, and J. Koistinaho, Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia, Proceedings of the National Academy of Sciences, vol.95, issue.26, p.15769, 1998.
DOI : 10.1073/pnas.95.26.15769

T. Tikka and J. Koistinaho, Minocycline Provides Neuroprotection Against N-Methyl-D-aspartate Neurotoxicity by Inhibiting Microglia, The Journal of Immunology, vol.166, issue.12, pp.7527-7533, 2001.
DOI : 10.4049/jimmunol.166.12.7527

S. Piccinin, D. Angelantonio, S. Piccioni, A. Volpini, R. Cristalli et al., CX3CL1-induced modulation at CA1 synapses reveals multiple mechanisms of EPSC modulation involving adenosine receptor subtypes, Journal of Neuroimmunology, vol.224, issue.1-2, pp.85-92, 2010.
DOI : 10.1016/j.jneuroim.2010.05.012

A. Sebastião and J. Ribeiro, Tuning and Fine-Tuning of Synapses with Adenosine, Current Neuropharmacology, vol.7, issue.3, pp.180-194, 2009.
DOI : 10.2174/157015909789152128

L. Lopes, R. Cunha, B. Kull, B. Fredholm, and J. Ribeiro, Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition, Neuroscience, vol.112, issue.2, pp.319-329, 2002.
DOI : 10.1016/S0306-4522(02)00080-5

R. Miller, D-Serine as a glial modulator of nerve cells, Glia, vol.100, issue.3, pp.275-283, 2004.
DOI : 10.1002/glia.20073

H. Wolosker, S. Blackshaw, and S. Snyder, Serine racemase: A glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission, Proceedings of the National Academy of Sciences, vol.96, issue.23, pp.13409-13414, 1999.
DOI : 10.1073/pnas.96.23.13409

G. Molla, S. Sacchi, M. Bernasconi, M. Pilone, K. Fukui et al., -amino acid oxidase, FEBS Letters, vol.277, issue.9, pp.2358-2364, 2006.
DOI : 10.1016/j.febslet.2006.03.045

URL : https://hal.archives-ouvertes.fr/hal-01306501

C. Henneberger, T. Papouin, S. Oliet, and D. Rusakov, Long-term potentiation depends on release of d-serine from astrocytes, Nature, vol.28, issue.7278, pp.232-236, 2010.
DOI : 10.1038/nature08673

M. Tebano, M. Martire, N. Rebola, R. Pepponi, M. Domenici et al., Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-d-aspartate effects, Journal of Neurochemistry, vol.17, issue.4, pp.1188-1200, 2005.
DOI : 10.1124/jpet.103.064881

N. Rebola, R. Lujan, R. Cunha, and C. Mulle, Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at??Hippocampal Mossy Fiber Synapses, Neuron, vol.57, issue.1, pp.121-134, 2008.
DOI : 10.1016/j.neuron.2007.11.023

F. Ciruela, V. Casado, R. Rodrigues, R. Lujan, J. Burgueno et al., Presynaptic Control of Striatal Glutamatergic Neurotransmission by Adenosine A1-A2A Receptor Heteromers, Journal of Neuroscience, vol.26, issue.7, pp.2080-2087, 2006.
DOI : 10.1523/JNEUROSCI.3574-05.2006

R. Cunha, Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors, Neurochemistry International, vol.38, issue.2, pp.107-125, 2001.
DOI : 10.1016/S0197-0186(00)00034-6

A. Mustafa, P. Kim, and S. Snyder, D-Serine as a putative glial neurotransmitter, Neuron Glia Biology, vol.1, issue.03, pp.275-281, 2004.
DOI : 10.1017/S1740925X05000141

J. Mothet, L. Pollegioni, G. Ouanounou, M. Martineau, P. Fossier et al., Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine, Proceedings of the National Academy of Sciences, vol.102, issue.15, pp.5606-5611, 2005.
DOI : 10.1073/pnas.0408483102

URL : https://hal.archives-ouvertes.fr/hal-00086056

L. Lawson, V. Perry, P. Dri, and S. Gordon, Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain, Neuroscience, vol.39, issue.1, pp.151-170, 1990.
DOI : 10.1016/0306-4522(90)90229-W

E. Njie, E. Boelen, F. Stassen, H. Steinbusch, D. Borchelt et al., Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function, Neurobiology of Aging, vol.33, issue.1, pp.195-196, 2012.
DOI : 10.1016/j.neurobiolaging.2010.05.008

W. Lu, M. Jackson, D. Bai, B. Orser, and J. Macdonald, In CA1 pyramidal neurons of the hippocampus protein kinase C regulates calcium-dependent inactivation of NMDA receptors, J Neurosci, vol.20, pp.4452-4461, 2000.

N. Rebola, A. Simões, P. Canas, A. Tomé, G. Andrade et al., Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction, Journal of Neurochemistry, vol.63, issue.1074
DOI : 10.1111/j.1471-4159.2011.07178.x

S. Cristóvão-ferreira, G. Navarro, M. Brugarolas, K. Pérez-capote, S. Vaz et al., Modulation of GABA Transport by Adenosine A1R-A2AR Heteromers, Which Are Coupled to Both Gs- and Gi/o-Proteins, Journal of Neuroscience, vol.31, issue.44
DOI : 10.1523/JNEUROSCI.2526-11.2011

B. Fredholm, A. Ijzerman, K. Jacobson, K. Klotz, and J. Linden, International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors, Pharmacol Rev, vol.53, pp.527-552, 2001.

M. Martineau, G. Baux, and J. Mothet, d-Serine signalling in the brain: friend and foe, Trends in Neurosciences, vol.29, issue.8, pp.481-491, 2006.
DOI : 10.1016/j.tins.2006.06.008

URL : https://hal.archives-ouvertes.fr/hal-00096620

C. Vargas-lopes, C. Madeira, S. Kahn, A. D. Couto, I. Bado et al., Protein kinase C activity regulates d-serine availability in the brain, Journal of Neurochemistry, vol.41, issue.2, pp.281-290, 2011.
DOI : 10.1111/j.1471-4159.2010.07102.x

S. Fuchs, R. Berger, and T. De-koning, d-Serine: The right or wrong isoform?, Brain Research, vol.1401, pp.104-117, 2011.
DOI : 10.1016/j.brainres.2011.05.039

D. Rosenberg, S. Artoul, A. Segal, G. Kolodney, I. Radzishevsky et al., Neuronal D-Serine and Glycine Release Via the Asc-1 Transporter Regulates NMDA Receptor-Dependent Synaptic Activity, Journal of Neuroscience, vol.33, issue.8, 2013.
DOI : 10.1523/JNEUROSCI.3836-12.2013

H. Wolosker, NMDA Receptor Regulation by D-serine: New Findings and Perspectives, Molecular Neurobiology, vol.385, issue.1???3, pp.152-164, 2007.
DOI : 10.1007/s12035-007-0038-6

Y. Huang, A. Colino, D. Selig, and R. Malenka, The influence of prior synaptic activity on the induction of long-term potentiation, Science, vol.255, issue.5045, pp.730-733, 1992.
DOI : 10.1126/science.1346729

Y. Izumi, D. Clifford, and C. Zorumski, Low concentrations of inhibit the induction of long-term potentiation in rat hippocampal slices, Neuroscience Letters, vol.137, issue.2, pp.245-248, 1992.
DOI : 10.1016/0304-3940(92)90414-3

F. Soriano and G. Hardingham, Compartmentalized NMDA receptor signalling to survival and death, The Journal of Physiology, vol.53, issue.2, pp.381-387, 2007.
DOI : 10.1113/jphysiol.2007.138875

F. Leveille, E. Gaamouch, F. Gouix, E. Lecocq, M. Lobner et al., Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors, The FASEB Journal, vol.22, issue.12, pp.4258-4271, 2008.
DOI : 10.1096/fj.08-107268