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Target cell recognition by cytotoxic lymphocytes implies the simultaneous engagement
and clustering of adhesion and activating receptors followed by the activation of an array of
signal transduction pathways. The cytotoxic immune synapse represents the highly spe-
cialized dynamic interface formed between the cytolytic effector and its target that allows
temporal and spatial integration of signals responsible for a defined sequence of processes
culminating with the polarized secretion of lytic granules. Over the last decades, much
attention has been given to the molecular signals coupling receptor ligation to the activa-
tion of cytolytic machinery. Moreover, in the last 10 years the discovery of genetic defects
affecting cytotoxic responses greatly boosted our knowledge on the molecular effectors
involved in the regulation of discrete phases of cytotoxic process at post-receptor levels.
More recently, the use of super resolution and total internal reflection fluorescence imaging
technologies added new insights on the dynamic reorganization of receptor and signaling
molecules at lytic synapse as well as on the relationship between granule dynamics and
cytoskeleton remodeling.To date we have a solid knowledge of the molecular mechanisms
governing granule movement and secretion, being not yet fully unraveled the machinery
that couples early receptor signaling to the late stage of synapse remodeling and gran-
ule dynamics. Here we highlight recent advances in our understanding of the molecular
mechanisms acting in the activation of cytolytic machinery, also discussing similarities and
differences between Natural killer cells and cytotoxic CD8+ T cells.
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INTRODUCTION
Natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) are
major actors in immune protection against viral infections and
cell transformation, and also mediate, in certain conditions, the
killing of autologous or allogeneic un-diseased cells (1, 2). Target
cell killing can occur upon the polarized secretion of cytotoxic
mediators, such as perforin and granzymes, stored in specialized
secretory lysosomes termed lytic granules (3).

While CTLs are activated by specific antigen recognition, the
activation of NK cells is regulated by a balance of activating
and inhibitory signals through a multitude of germ-line encoded
receptors following the recognition of ligands expressed on the
surface of target cells (4).

Based on recent acquisitions, this review attempts to draw a
comprehensive picture on the coupling of receptor proximal sig-
nals to the late stages of synapse remodeling and granule dynamics;
rather than covering how signals from discrete activation recep-
tors cooperate to control NK-cell activation, a topic which has been
extensively addressed in recent excellent reviews (5), we would try
to recapitulate for every individual phase of the cytolytic process
how the molecular signals arising upon receptor ligation are cou-
pled to the distal molecular effectors responsible for the activation
of cytolytic machinery, also highlighting the differences between
CTLs and NK cells.

CYTOLYTIC SYNAPSE FORMATION
The cytotoxic event is a well defined multistep process starting with
the formation of a cell–cell contact specialized area called cytolytic
synapse (3, 6) devoted to the polarized secretion of cytotoxic
molecules.

Upon target recognition, receptors and signaling molecules
rapidly segregate in the cytolytic synapse forming a supramolecu-
lar activation cluster (SMAC) that can be divided into concentrical
zones: the central (cSMAC) and the peripheral (pSMAC) SMAC
that is thought to be the focal point for the exocytosis of secretory
lysosomes.

The formation of a mature synapse is not always essential for
cell lysis by CTLs (7, 8), but it is believed to increase the efficiency
of lytic granule polarization and target cell killing (9). Indeed,
intra-vital imaging of the behavior of individual CTL or NK-cell
infiltrating solid tumors in a mouse model has revealed that while
CTLs tend to form more stable contacts with tumor cells, NK cells
establish dynamic contacts (10).

An early stage in the commitment to cytolytic synapse forma-
tion is actin reorganization. As shown by 3-D confocal microscopy
studies, actin rapidly polymerizes at the synapse periphery of
both CTLs and NK cells to arrange a dense ring of cortical F-
actin surrounding a central area through which lytic granules are
secreted (6, 11).
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Recently, the model of NK cells secreting lytic granules through
a central region devoid of F-actin has been exceeded. A couple
of companion papers (12, 13), both using very high-resolution
imaging techniques, reveal that F-actin forms a pervasive network
at the synapse, and that following activating receptor engage-
ment, lytic granules are secreted through the filamentous network
by accessing minimally sufficient sized clearances instead of a
large-scale clearing of actin filaments. Such remodeling of cortical
actin occurs within the central region of the synapse establishing
secretory domain where lytic granules dock.

Strictly dependent on actin dynamics, activating signals are ini-
tiated by the formation of receptor micro-clusters at the periphery
of the synapse in CTLs (14) and NK cells (15) undergoing a cen-
tripetal migration toward the synapse center. This movement is
directed by actin depolymerization flow from an actin-rich periph-
ery into an actin-poor area as shown by total internal reflection
fluorescence microscopy (TIRF)-based studies in live T cells on
lipid bilayer (16, 17).

Although, LFA1 ligation by ICAM-1 can signal on its own in
NK cells (18), the formation of a stable and symmetric F-actin
ring at cytolytic synapse requires integrin and NKG2D activating
receptor co-ligation (12, 19). Similarly, in T cells, T cell receptor
(TCR) and LFA1 co-aggregation is needed for the efficient synapse
formation (20) (Figure 1A).

Downstream to LFA1, Cdc42 becomes active (21) and exhibits
an oscillatory activation behavior at NK synapse (22); its molecu-
lar effector, Wiskott–Aldrich syndrome protein (WASp) is directly
responsible for actin polymerization through the activation of the
actin nucleator Arp2/3 complex. Accordingly, in the absence of
WASp, as it occurs in the immune disorder WAS, or in the pres-
ence of actin inhibitors, F-actin accumulation at the synapse and
the ability to kill is reduced in both NK cells (23–25) and CTLs (26)
(Figure 1A). WASp activation strictly depends on phosphoinosi-
tide phosphatidylinositol 4,5-bisphosphate (PIP2) that is rapidly
consumed at the cytolytic synapse (27). In this context the role
of the actin binding protein talin has been clarified: its binding
to the cytoplasmic tail of beta2 integrin mediates the recruit-
ment of Arp2/3 which initiates actin polymerization upon LFA1
ligation (28).

SECRETORY APPARATUS POLARIZATION
The activation of cytolytic machinery is achieved through a strong
cell polarization driven by the reorganization of microtubule and
actin cytoskeleton allowing the polarized secretion of lytic granules
(Figure 1B).

Lytic granule journey starts with a retrograde minus-end trans-
port on microtubules toward the centrosome or microtubule-
organizing center (MTOC), followed by movement of the MTOC
with clustered granules toward the edge of cSMAC both in CTLs
and NK cells (29, 30). Microtubule-based molecular motor dynein
has been implicated in the retrograde transport of granules to
the MTOC and the subsequent movement of the MTOC toward
the immune synapse in an actin-independent manner (31, 32).
While in T cells the MTOC was believed to associate closely
with the synapse to directly deliver lytic granule without the
need of additional plus-ended granule motors (29), a recent
report demonstrates that the microtubule motor protein kinesin-1

complexed to the small G protein Rab27a and synaptotagmin-
like protein (slp)-3, acts in the terminal anterograde transport of
cytotoxic granules close to the plasma membrane in CTLs (33).
Whether kinesin-1 is required for the final microtubule transport
to position lytic granule in NK cells needs further studies.

Recently, describing a spatio-temporal dissociation of the
MTOC with lytic granules, the question of the requirement of
MTOC polarization for efficient lethal hit delivery in CTLs has
been raised (34). Beside microtubules, the movement of the
MTOC/lytic granule complex toward the synapse also involves
actin dynamics (6, 32). Indeed, in a pre-final step, the motor pro-
tein non-muscle myosin IIA mediates F-actin association with
lytic granules (35, 36) and drives the final transit through the
minimal clearance in the F-actin network across the cytolytic
synapse, thus allowing granule approximation to synaptic mem-
brane in NK cells. Furthermore, also in CTLs the two motor
complexes dynein and myosin II has been described to work in
a collaborative manner (37). The mutation of the gene encoding
myosin IIA leads to May–Hegglin anomaly implying a reduced NK
cytotoxicity (38).

In human NK cells signals for granule polarization can be
uncoupled from degranulation: LFA1 engagement by ICAM-1 is
sufficient to induce granule redistribution (18) thus featuring the
minimal requirement for secretory lysosome polarization.

PLC gamma is regarded as a major factor in driving micro-
tubule polarity and granule redistribution. Recently, LFA1-
dependent Syk phosphorylation has been linked to the activa-
tion of PLC gamma-protein kinase C (PKC)-dependent pathway
required for granule polarization (39) in NK cells. Additionally, Src
kinases downstream to activating receptors, have been also impli-
cated in the repositioning of MTOC and lytic granule both in CTL
and NK cells (40, 41). Moreover, beta2 integrin-dependent phos-
phorylation of the molecular scaffold paxillin that associates with
the tyrosine kinase Pyk2 has been shown to participate in directing
MTOC polarization at NK synapse (42, 43). In CTLs the combined
signal LFA1 and TCR is required for paxillin recruitment (44) to
the site of integrin engagement.

PLC gamma defines a critical polarization pathway mediat-
ing the localized accumulation of second messenger diacylglycerol
(DAG), which in turn promotes the recruitment of dynein at
the MTOC/granule clusters (45). Notably, in agreement with the
failure of integrin receptors to be coupled to Ca2+-dependent
pathways, polarization resulted unaffected in the absence of cal-
cium signaling in NK cells (39, 41). Differently in CTLs, variation
in the Ca2+ concentration is thought to determine the kinetics of
granule recruitment to the MTOC (9, 46).

Downstream to DAG, MTOC dynamics and polarization is
driven by PKC isozymes recruited to the synaptic membrane.
In CTLs, PKCη, PKCε, and PKCθ function redundantly to reg-
ulate the two motor complexes dynein and myosin II in driving
MTOC polarization. Recent findings clarified how TCR signaling
is coupled to the force-generating machinery demonstrating that
PKCs activity controls myosin II localization directly by phospho-
rylating inhibitory sites within the myosin regulatory light chain;
concurrently, Rho kinase (ROCK), mediating the phosphoryla-
tion of distinct sites within myosin regulatory light chain, induces
myosin II clustering behind the MTOC (37). Additionally, PKC
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Galandrini et al. Molecular mechanisms of lymphocyte-mediated cytotoxicity

FIGURE 1 | Main signaling pathways and molecular effectors implicated
in the regulation of individual phases of the cytolytic process. The
sequence of steps leading to the activation of cytolytic machinery are
represented as: lytic synapse formation (A), secretory apparatus polarization

(B), lytic granule secretion (C), and lytic granule trafficking and retrieval (D).
The continuous line arrows indicate the signaling pathway likely common to
NK cells and CTLs. Large-dashed arrows indicate the exclusive pathways of
NK cells, while fine-dashed arrows indicate the exclusive pathways of CTLs.
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delta has been shown to co-localize with polarized granules in
T cells (47).

In NK cells PKCθ is required for the WASp interacting pro-
tein WIP activation and association with secretory lysosomes
at cytolytic synapse; the subsequent interaction with F-actin
and myosin IIA (48, 49) links lytic granules to the actomyosin-
dependent movement.

Another protein that plays a role in lytic granule movement
in CTLs, is the small GTPase Rab7 acting by recruiting dynein-
dynactin motor complex to secretory lysosomes through its mole-
cular effector Rab interacting lysosomal protein, RILP, (50). Rab7
is recruited to the WASp-WIP-F-actin complex at the NK lytic
synapse (48).

Cdc42-dependent signals have also been implicated in MTOC
polarization through CDC42-interacting protein (CIP4), which
contributes to anchor MTOC to the synapse by interacting with
WASp and tubulin (51).

Proximal signals required for MTOC polarization in NK cells
also include the extracellular regulated kinases, Erk1/2. The well-
characterized phosphatidylinositol 3-kinase (PI3K)-dependent
Rac1 → p21-activated kinase 1 (Pak1) → MEK-ERK1/2 pathway
has been long referred as critical for lytic granule polarization
in NK cells (43, 52, 53). On the opposite, in CTLs Erk activ-
ity is dispensable for MTOC reorientation (44). Erk activation
has been uncoupled from integrin receptors while it is turned
on downstream to activating receptors. Following NKG2D liga-
tion for instance, PI3K-dependent pathway involving the adaptor
CrkL and the small GTPase Rap1, has been shown to be required
for MTOC polarization (54).

Despite multiple evidences, the involvement of Erk in micro-
tubule remodeling is not fully understood. Erk2 was found to co-
localize with microtubules (55), whereas paxillin phosphorylation
has been linked to the PI3K-Erk pathway (56).

The final part of granule journey involves actin remodeling
which occurs independently from LFA1 co-ligation (57), and
defines a further “checkpoint” in the cytotoxic process: recent
evidences demonstrate that NK-cell activation through several
activating receptors including CD16 and NKG2D, leads to the
remodeling of the cortical actin mesh at the synapse center to
produce discrete nanometer-scale domains, as above mentioned
(12). Contextually, micro-clusters of Grb2 and Vav1 signaling
molecules rapidly reorganize to form a ring-shaped structure at
the synapse center. Indeed, the pathway Vav1 → Rac1 → Pak1 is
activated following CD16 and NKG2D ligation (58, 59) and regu-
lates actin and microtubule dynamics (53) (Figure 1B). Whether
remodeling of cortical actin within the central region of the NK-
cell synapse is also controlled by this pathway, requires further
investigation.

LYTIC GRANULE SECRETION
Once lytic granules have reached the plasma membrane they are
highly dynamic and mobile (60) and, contextually, docking and
priming occur. Rab27a GTPase plays a critical role in granule
docking; ultrastructural analysis evidenced that polarized gran-
ules fail to dock at the plasma membrane in response to TCR
stimulation (61). The gene encoding Rab27a is mutated in the
immunodeficiency Griscelli syndrome 2 (GS2) and in Ashen mice,

resulting in severely reduced cytotoxic activity in CTLs (62, 63).
In CTLs Rab27a binds to the synaptotagmin-like proteins Slp1
and Slp2 facilitating granule tethering (64, 65). In NK cells a
Rab27a-independent pathway for CD16-mediated killing has also
been reported (66). The finding of a residual degranulation in NK
cells from GS2 patients is thought to indicate a relative redundancy
of Rab protein activity (67).

Upon granule docking, the Rab27a binding partner, Munc13-
4, mediates the priming of lytic granule in CTLs and NK cells
(68, 69). Munc13-4 is mutated in familial hemophagocytic lym-
phohistiocytosis type 3 (FHL3); in the absence of Munc13-4,
cytotoxic granules dock at the site of secretion but cannot fuse
with the plasma membrane, thus leading to a severe reduction
of cytotoxic activity. Munc13-4 has been postulated to open the
conformation of the target (t-)SNARE syntaxin11 by removal of
Munc18-2 which is required for syntaxin11 stabilization in NK
cells (70). Indeed, Munc18-2 mutation causes FHL5 resulting in
reduced granule exocytosis in NK cells (71). Moreover, mutations
of syntaxin11 in FHL4 (72, 73) implicate a partial impairment of
granule exocytosis both in NK cells and CTLs; the observation that
the defect can be partially restored by IL-2 stimulation suggests
the redundancy of syntaxin isoforms in the secretory mecha-
nisms. Functional studies have shown that deficiency in vesicle
(v-)SNAREs, VAMP7, VAMP8, and VAMP4 results in defective
granule exocytosis (74–76) (Figure 1C).

An additional role of Munc13-4 in enabling the matura-
tion of perforin-containing granules has been highlighted in
CTLs: a seminal study demonstrated that close to the cytolytic
synapse, Munc13-4 promotes the coalescence of a pool of endo-
somal/recycling vesicles carrying effectors of cytolytic machinery
such as Rab27a and Munc13-4, with perforin-containing gran-
ules, leading to the formation of a unique mature“exocytic vesicle”
(77). The observation that in NK cells neither Rab27 or Munc13-4
are present on the lytic granule surface but associate with them
upon receptor engagement, suggests a similar role; moreover, sep-
arate signaling routes are used in NK cells to direct Munc13-4 and
Rab27a to lytic granule (67).

While the nature of the signals that couples activating recep-
tors to secretory machine remains partially unknown, the strict
calcium-dependence remains the hallmark for lytic granule secre-
tion (78). The essential role of PLCgamma2 in granule exocytosis
has been demonstrated in knock out mice (79). Downstream to
TCR or NK activating receptors, the activation of PLC gamma
results in the hydrolysis of PIP2 to generate the second messenger
inositol-1,4,5-trisphosphate (IP3) which triggers the mobilization
of intracellular Ca2+ from endoplasmic reticulum; the resulting
depletion of Ca2+ stores and aggregation of endoplasmic reticu-
lum Ca2+ sensor,STIM,trans-activate the plasma membrane Ca2+

release-activated Ca2+ channel ORAI1, leading to the store oper-
ated Ca2+ entry (SOCE). Patients with mutation in either STIM1
or ORAI1 exhibit a defect in secretion, whereas lytic granule polar-
ization results unaffected (80). Phosphatidylinositol-4-phosphate
5-kinase (PIP5K)alpha and gamma isoforms are the enzymes
mainly responsible for PIP2 synthesis in NK cells; they synergisti-
cally act in the control IP3/Ca2+ levels required for lytic granule
exocytosis (27); in contrast, PIP5Ks isoenzymes behave redun-
dantly in the control of granule polarization which is in line with
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the lack of Ca2+-dependence, as above mentioned. Downstream
to CD16, PIP5Kalpha activation is regulated by small G protein
Arf6; accordingly, interfering with Arf6 function leads to reduced
lytic granule exocytosis (81).

The Ca2+-dependent factors required for lytic granule exo-
cytosis are largely unknown. The high-affinity Ca2+ binding
protein synaptotagmin is a possible candidate; recently, synap-
totagmin VII has been implicated in exocytosis of lytic granules
(82) (Figure 1C).

Because Munc13-4 contains two C2, Ca2+ binding domains,
it also might represent a Ca2+ sensor for exocytosis. Actually, the
translocation of Munc13-4 to membrane rafts, indicating gran-
ule fusion with plasma membrane, occurs in Ca2+-independent
manner (83).

LYTIC GRANULE TRAFFICKING AND RETRIEVAL
The demonstration that Rab11+ recycling endosome polarizes
at cytolytic synapse along with secretory apparatus in order to
allow Munc13-4-dependent granule maturation into a fusion-
competent lytic organelle (77), have raised the disrupting concept
that the cytolytic synapse behaves as a focal point for both exo-
cytosis and endocytosis. Indeed, a bidirectional trafficking of lytic
granule proteins exposed at the plasma membrane on degranula-
tion has been demonstrated; both lysosome-associated membrane
protein-1 (LAMP-1, also known as CD107a) (84) and Munc13-4
(83) undergo a rapid endocytosis, leading to the hypothesis that
granule exocytosis is coordinated with the retrieval of cytolytic
machinery components. Additionally, cytolytic mediators are also
recaptured into early endosomes of NK cells via a clathrin-
dependent route after target cell stimulation thus contributing to
the cytolytic potential (85).

In this framework, the ability of cytolytic effectors to execute
multiple killing cycles in a short time period (86–88) is thought
to depend both on the release of a fraction of lytic granules (77)
and on a continuum refilling of the granule store through newly
synthesized cytotoxic mediators (89). Whether secretory lysosome
retrieval could facilitate recycling and reusing of cytotoxic machin-
ery components thus contributing to the serial killing potential, is
not fully understood.

The molecular signals controlling the endocytic traffic at
cytolytic synapse have begun to be clarified. Recent findings
reported that a constitutive PIP5Kgamma-dependent PIP2 pool
is involved in the control of Munc13-4 re-internalization through
a clathrin/AP2 dependent endocytic route, which is functional
to ensure the full serial killing potential in NK cells (83). Such
findings strengthen the analogy between neuronal and cytolytic
synapse where PIP5K gamma also triggers the clathrin-mediated
retrieval of synaptic vesicles (90) (Figure 1D).

An additional effector molecule involved in granule recapture
during exocytosis can be the fission factor dynamin 2 which have
been shown to be required for cytotoxicity in NK cells (91).

PERSPECTIVES
One of the aspects that remains enigmatic in the biology of lym-
phocyte cytotoxicity is the serial killing potential. The ability of
NK cells and CTLs to mediate the sequential attack of successive
targets by a single effector was suggested in early observations; only

recently, however, intra-vital and real-time imaging of a single cell
behavior have shed light on a marked heterogeneity in the cyto-
toxic potential and on relevant differences in the contact dynamic
with target cells (87, 88): CTLs forming stable independent synapse
are able to simultaneously bind and attack multiple targets, while
NK cells forming short-lived synapse, allows the detachment and
the subsequent engagement of other targets. Intriguingly, NK cells
are proposed to integrate signals arising form previous and current
targets resulting in a continuous signaling that persist until forma-
tion of a new synapse (87). A considerable challenge for the future
will be the understanding of the spatial and temporal coordina-
tion of molecular signals which may account for different qualities
of cytolytic responses. In such framework the knowledge on how
NK-cell contact with target is terminated and the molecular basis
of retrieval processes also represent future challenges.

Also we need to learn more on NK-cell education: in partic-
ular, while the molecular basis of MHC-I-dependent licensing
have began to be clarified (92, 93), completely unknown remains
the molecular basis of NK hypo-responsiveness that follows the
sustained stimulation of certain activating receptors.

The unraveling of NK functional plasticity would have a major
impact in NK-cell-based immunotherapeutic approaches and
could drive a renewed interest in signal transduction processes.
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