N. Zhang and M. Bevan, CD8+ T Cells: Foot Soldiers of the Immune System, Immunity, vol.35, issue.2, pp.161-169, 2011.
DOI : 10.1016/j.immuni.2011.07.010

E. Vivier, D. Raulet, A. Moretta, M. Caligiuri, L. Zitvogel et al., Innate or Adaptive Immunity? The Example of Natural Killer Cells, Science, vol.331, issue.6013, pp.44-53, 2011.
DOI : 10.1126/science.1198687

URL : https://hal.archives-ouvertes.fr/hal-00611585

J. Stinchcombe and G. Griffiths, Secretory Mechanisms in Cell-Mediated Cytotoxicity, Annual Review of Cell and Developmental Biology, vol.23, issue.1, pp.495-517, 2007.
DOI : 10.1146/annurev.cellbio.23.090506.123521

L. Lanier, Up on the tightrope: natural killer cell activation and inhibition, Nature Immunology, vol.179, issue.5, pp.495-502, 2008.
DOI : 10.1371/journal.pone.0000326

E. Long, S. Kim, H. Liu, D. Peterson, M. Rajagopalan et al., Controlling Natural Killer Cell Responses: Integration of Signals for Activation and Inhibition, Annual Review of Immunology, vol.31, issue.1, pp.227-58, 2013.
DOI : 10.1146/annurev-immunol-020711-075005

J. Orange, K. Harris, M. Andzelm, M. Valter, R. Geha et al., The mature activating natural killer cell immunologic synapse is formed in distinct stages, Proceedings of the National Academy of Sciences, vol.100, issue.24, pp.14151-14157, 2003.
DOI : 10.1073/pnas.1835830100

M. Purbhoo, D. Irvine, J. Huppa, and M. Davis, T cell killing does not require the formation of a stable mature immunological synapse, Nature Immunology, vol.90, issue.5, pp.524-554, 2004.
DOI : 10.1073/pnas.95.11.6302

A. Wiedemann, D. Depoil, M. Faroudi, and S. Valitutti, Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses, Proceedings of the National Academy of Sciences, vol.103, issue.29, pp.10985-90, 2006.
DOI : 10.1073/pnas.0600651103

A. Beal, N. Anikeeva, R. Varma, T. Cameron, G. Vasiliver-shamis et al., Kinetics of Early T Cell Receptor Signaling Regulate the Pathway of Lytic Granule Delivery to the Secretory Domain, Immunity, vol.31, issue.4, pp.632-674, 2009.
DOI : 10.1016/j.immuni.2009.09.004

J. Deguine, B. Breart, F. Lemaître, D. Santo, J. Bousso et al., Intravital Imaging Reveals Distinct Dynamics for Natural Killer and CD8+ T Cells during Tumor Regression, Immunity, vol.33, issue.4, pp.632-676, 2010.
DOI : 10.1016/j.immuni.2010.09.016

T. Daniele, Y. Hackmann, A. Ritter, M. Wenham, S. Booth et al., A Role for Rab7 in the Movement of Secretory Granules in Cytotoxic T Lymphocytes, Traffic, vol.13, issue.7, pp.902-913, 2011.
DOI : 10.1111/j.1600-0854.2011.01194.x

A. Mentlik, K. Sanborn, E. Holzbaur, and J. Orange, Rapid Lytic Granule Convergence to the MTOC in Natural Killer Cells Is Dependent on Dynein But Not Cytolytic Commitment, Molecular Biology of the Cell, vol.21, issue.13, pp.2241-56, 2010.
DOI : 10.1091/mbc.E09-11-0930

M. Kurowska, N. Goudin, N. Nehme, M. Court, J. Garin et al., Terminal transport of lytic granules to the immune synapse is mediated by the

F. Bertrand, S. Müller, K. Roh, C. Laurent, L. Dupré et al., An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse, Proceedings of the National Academy of Sciences, vol.110, issue.15, pp.6073-6081, 2013.
DOI : 10.1073/pnas.1218640110

M. Andzelm, X. Chen, K. Krzewski, J. Orange, and J. Strominger, Myosin IIA is required for cytolytic granule exocytosis in human NK cells, The Journal of Experimental Medicine, vol.24, issue.10, pp.2285-91, 2007.
DOI : 10.1182/blood-2006-04-015693

K. Sanborn, E. Mace, G. Rak, A. Difeo, J. Martignetti et al., Phosphorylation of the myosin IIA tailpiece regulates single myosin IIA molecule association with lytic granules to promote NK-cell cytotoxicity, Blood, vol.118, issue.22, pp.5862-71, 2011.
DOI : 10.1182/blood-2011-03-344846

X. Liu, T. Kapoor, J. Chen, and M. Huse, Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II, Proceedings of the National Academy of Sciences, vol.110, issue.29, pp.11976-81, 2013.
DOI : 10.1073/pnas.1306180110

K. Sanborn, G. Rak, S. Maru, K. Demers, A. Difeo et al., Myosin IIA Associates with NK Cell Lytic Granules to Enable Their Interaction with F-Actin and Function at the Immunological Synapse, The Journal of Immunology, vol.182, issue.11, pp.6969-84, 2009.
DOI : 10.4049/jimmunol.0804337

M. March and E. Long, ??2 Integrin Induces TCR??-Syk-Phospholipase C-?? Phosphorylation and Paxillin-Dependent Granule Polarization in Human NK Cells, The Journal of Immunology, vol.186, issue.5, pp.2998-3005, 2011.
DOI : 10.4049/jimmunol.1002438

A. Tsun, I. Qureshi, J. Stinchcombe, M. Jenkins, M. De-la-roche et al., Centrosome docking at the immunological synapse is controlled by Lck signaling, The Journal of Cell Biology, vol.268, issue.4, pp.663-74, 2011.
DOI : 10.1083/jcb.201008140.dv

A. James, H. Hsu, P. Dongre, G. Uzel, E. Mace et al., Rapid activation receptor- or IL-2-induced lytic granule convergence in human natural killer cells requires Src, but not downstream signaling, Blood, vol.121, issue.14, pp.2627-2664, 2013.
DOI : 10.1182/blood-2012-06-437012

A. Gismondi, L. Bisogno, F. Mainiero, G. Palmieri, M. Piccoli et al., Prolinerich tyrosine kinase-2 activation by beta 1 integrin fibronectin receptor crosslinking and association with paxillin in human natural killer cells, J Immunol, vol.159, pp.4729-4765, 1997.

D. Sancho, M. Nieto, M. Llano, J. Rodríguez-fernández, R. Tejedor et al., The Tyrosine Kinase Pyk-2/Raftk Regulates Natural Killer (Nk) Cell Cytotoxic Response, and Is Translocated and Activated upon Specific Target Cell Recognition and Killing, The Journal of Cell Biology, vol.18, issue.6, pp.1249-62, 2000.
DOI : 10.1016/0092-8674(91)90389-G

L. Robertson and H. Ostergaard, Paxillin Associates with the Microtubule Cytoskeleton and the Immunological Synapse of CTL through Its Leucine-Aspartic Acid Domains and Contributes to Microtubule Organizing Center Reorientation, The Journal of Immunology, vol.187, issue.11, pp.5824-5857, 2011.
DOI : 10.4049/jimmunol.1003690

E. Quann, E. Merino, T. Furuta, and M. Huse, Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells, Nature Immunology, vol.5, issue.6, pp.627-662, 2009.
DOI : 10.1038/ni.1734

M. Kuhné, J. Lin, D. Yablonski, M. Mollenauer, L. Ehrlich et al., Linker for Activation of T Cells, ??-Associated Protein-70, and Src Homology 2 Domain-Containing Leukocyte Protein-76 are Required for TCR-Induced Microtubule-Organizing Center Polarization, The Journal of Immunology, vol.171, issue.2, pp.860-866, 2003.
DOI : 10.4049/jimmunol.171.2.860

J. Ma, T. Haydar, and S. Radoja, Protein Kinase C ?? Localizes to Secretory Lysosomes in CD8+ CTL and Directly Mediates TCR Signals Leading to Granule Exocytosis-Mediated Cytotoxicity, The Journal of Immunology, vol.181, issue.7, pp.4716-4738, 2008.
DOI : 10.4049/jimmunol.181.7.4716

K. Krzewski, X. Chen, J. Orange, and J. Strominger, Formation of a WIP-, WASp-, actin-, and myosin IIA???containing multiprotein complex in activated NK cells and its alteration by KIR inhibitory signaling, The Journal of Cell Biology, vol.112, issue.1, pp.121-153, 2006.
DOI : 10.1016/S0960-9822(02)01035-7

K. Krzewski, X. Chen, and J. Strominger, WIP is essential for lytic granule polarization and NK cell cytotoxicity, Proceedings of the National Academy of Sciences, vol.105, issue.7, pp.2568-73, 2008.
DOI : 10.1073/pnas.0711593105

I. Jordens, M. Fernandez-borja, M. Marsman, S. Dusseljee, L. Janssen et al., The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors, Current Biology, vol.11, issue.21, pp.1680-1685, 2001.
DOI : 10.1016/S0960-9822(01)00531-0

P. Banerjee, R. Pandey, R. Zheng, M. Suhoski, L. Monaco-shawver et al., Cdc42-interacting protein???4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse, The Journal of Experimental Medicine, vol.61, issue.10, pp.2305-2325, 2007.
DOI : 10.1128/MCB.23.6.2151-2161.2003

K. Jiang, B. Zhong, D. Gilvary, B. Corliss, E. Hong-geller et al., Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells, Nature Immunology, vol.1, issue.5, pp.419-251080859, 1038.
DOI : 10.1038/80859

D. Graham, M. Cella, E. Giurisato, K. Fujikawa, A. Miletic et al., Vav1 Controls DAP10-Mediated Natural Cytotoxicity by Regulating Actin and Microtubule Dynamics, The Journal of Immunology, vol.177, issue.4, pp.2349-55, 2006.
DOI : 10.4049/jimmunol.177.4.2349

C. Segovis, R. Schoon, C. Dick, L. Nacusi, P. Leibson et al., PI3K Links NKG2D Signaling to a CrkL Pathway Involved in Natural Killer Cell Adhesion, Polarity, and Granule Secretion, The Journal of Immunology, vol.182, issue.11, pp.6933-6975, 2009.
DOI : 10.4049/jimmunol.0803840

X. Chen, D. Allan, K. Krzewski, B. Ge, H. Kopcow et al., CD28-stimulated ERK2 phosphorylation is required for polarization of the microtubule organizing center and granules in YTS NK cells, Proceedings of the National Academy of Sciences, vol.103, issue.27, pp.10346-51, 2006.
DOI : 10.1073/pnas.0604236103

L. Robertson, L. Mireau, and H. Ostergaard, A Role for Phosphatidylinositol 3-Kinase in TCR-Stimulated ERK Activation Leading to Paxillin Phosphorylation and CTL Degranulation, The Journal of Immunology, vol.175, issue.12, pp.8138-8183, 2005.
DOI : 10.4049/jimmunol.175.12.8138

A. Brown, I. Dobbie, J. Alakoskela, I. Davis, and D. Davis, Super-resolution imaging of remodeled synaptic actin reveals different synergies between NK cell receptors and integrins, Blood, vol.120, issue.18, pp.3729-3769, 2012.
DOI : 10.1182/blood-2012-05-429977

D. Billadeau, K. Brumbaugh, C. Dick, R. Schoon, X. Bustelo et al., The Vav???Rac1 Pathway in Cytotoxic Lymphocytes Regulates the Generation of Cell-mediated Killing, The Journal of Experimental Medicine, vol.157, issue.3, pp.549-59, 1998.
DOI : 10.1083/jcb.137.6.1421

R. Galandrini, G. Palmieri, M. Piccoli, L. Frati, and A. Santoni, Role for the Rac1 exchange factor Vav in the signaling pathways leading to NK cell cytotoxicity, J Immunol, vol.162, pp.3148-52, 1999.

E. Mace, W. Wu, T. Ho, S. Mann, H. Hsu et al., NK Cell Lytic Granules Are Highly Motile at the Immunological Synapse and Require F-Actin for Post-Degranulation Persistence, The Journal of Immunology, vol.189, issue.10, pp.4870-80, 2012.
DOI : 10.4049/jimmunol.1201296

J. Stinchcombe, D. Barral, E. Mules, S. Booth, A. Hume et al., Rab27a Is Required for Regulated Secretion in Cytotoxic T Lymphocytes, The Journal of Cell Biology, vol.110, issue.4, pp.825-859, 2001.
DOI : 10.1073/pnas.140212797

S. Wilson, R. Yip, D. Swing, O. Sullivan, T. Zhang et al., A mutation in Rab27a causes the vesicle transport defects observed in ashen mice, Proceedings of the National Academy of Sciences, vol.97, issue.14, pp.7933-7941, 2000.
DOI : 10.1073/pnas.140212797

G. Ménasché, E. Pastural, J. Feldmann, S. Certain, F. Ersoy et al., Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome, Nat Genet, vol.25, pp.173-179, 2000.

G. Ménasché, M. Ménager, J. Lefebvre, E. Deutsch, R. Athman et al., A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion, Blood, vol.112, issue.13, pp.5052-62, 2008.
DOI : 10.1182/blood-2008-02-141069

O. Holt, E. Kanno, G. Bossi, S. Booth, D. T. Santoro et al., Slp1 and Slp2-a Localize to the Plasma Membrane of CTL and Contribute to Secretion from the Immunological Synapse, Traffic, vol.1, issue.4, pp.446-57, 2008.
DOI : 10.1038/4779

R. Gazit, M. Aker, M. Elboim, H. Achdout, G. Katz et al., NK cytotoxicity mediated by CD16 but not by NKp30 is functional in Griscelli syndrome, Blood, vol.109, issue.10, pp.4306-4318, 2007.
DOI : 10.1182/blood-2006-09-047159

S. Wood, M. Meeths, S. Chiang, A. Bechensteen, J. Boelens et al., Different NK cell-activating receptors preferentially recruit Rab27a or Munc13-4 to perforin-containing granules for cytotoxicity, Blood, vol.114, issue.19, pp.4117-4144, 2009.
DOI : 10.1182/blood-2009-06-225359

J. Feldmann, I. Callebaut, G. Raposo, S. Certain, D. Bacq et al., Munc13-4 Is Essential for Cytolytic Granules Fusion and Is Mutated in a Form of Familial Hemophagocytic Lymphohistiocytosis (FHL3), Cell, vol.115, issue.4, pp.461-73, 2003.
DOI : 10.1016/S0092-8674(03)00855-9

S. Marcenaro, F. Gallo, S. Martini, A. Santoro, G. Griffiths et al., Analysis of natural killer-cell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease, Blood, vol.108, issue.7, pp.2316-2339, 2006.
DOI : 10.1182/blood-2006-04-015693

E. Elstak, M. Neeft, N. Nehme, J. Voortman, M. Cheung et al., The munc13-4-rab27 complex is specifically required for tethering secretory lysosomes at the plasma membrane, Blood, vol.118, issue.6, pp.1570-1578, 2011.
DOI : 10.1182/blood-2011-02-339523

URL : https://hal.archives-ouvertes.fr/hal-00613200

M. Côte, M. Ménager, A. Burgess, N. Mahlaoui, C. Picard et al., Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells, Journal of Clinical Investigation, vol.119, issue.12, pp.3765-7310, 1172.
DOI : 10.1172/JCI40732DS1

Z. Stadt, U. Beutel, K. Kolberg, S. Schneppenheim, R. Kabisch et al., Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses ofPRF1, UNC13D, STX11, andRAB27A, Human Mutation, vol.14, issue.1, pp.62-70, 2006.
DOI : 10.1002/humu.20274

Y. Bryceson, E. Rudd, C. Zheng, J. Edner, D. Ma et al., Defective cytotoxic lymphocyte degranulation in syntaxin-11-deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients, Blood, vol.110, issue.6, pp.1906-1921, 2007.
DOI : 10.1182/blood-2007-02-074468

M. Marcet-palacios, S. Odemuyiwa, J. Coughlin, D. Garofoli, C. Ewen et al., Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line, Biochemical and Biophysical Research Communications, vol.366, issue.3, pp.617-640, 2008.
DOI : 10.1016/j.bbrc.2007.11.079

L. Loo, L. Hwang, Y. Ong, H. Tay, C. Wang et al., A role for endobrevin/VAMP8 in CTL lytic granule exocytosis, European Journal of Immunology, vol.23, issue.12, pp.3520-3528, 2009.
DOI : 10.1002/eji.200939378

K. Krzewski, A. Gil-krzewska, J. Watts, J. Stern, and J. Strominger, VAMP4- and VAMP7-expressing vesicles are both required for cytotoxic granule exocytosis in NK cells, European Journal of Immunology, vol.103, issue.11, pp.3323-3332, 2011.
DOI : 10.1002/eji.201141582

M. Ménager, G. Ménasché, M. Romao, P. Knapnougel, C. Ho et al., Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4, Nature Immunology, vol.4, issue.3, pp.257-6710, 1038.
DOI : 10.1002/(SICI)1097-0320(19960101)23:1<15::AID-CYTO3>3.0.CO;2-L

A. Pores-fernando and A. Zweifach, Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis, Immunological Reviews, vol.197, issue.1, pp.160-73, 2009.
DOI : 10.1111/j.1600-065X.2009.00809.x

I. Tassi and M. Colonna, The Cytotoxicity Receptor CRACC (CS-1) Recruits EAT-2 and Activates the PI3K and Phospholipase C?? Signaling Pathways in Human NK Cells, The Journal of Immunology, vol.175, issue.12, pp.7996-8002, 2005.
DOI : 10.4049/jimmunol.175.12.7996

A. Maul-pavicic, S. Chiang, A. Rensing-ehl, B. Jessen, C. Fauriat et al., ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte degranulation and target cell lysis, Proceedings of the National Academy of Sciences, vol.108, issue.8, pp.3324-3333, 2011.
DOI : 10.1073/pnas.1013285108

R. Galandrini, F. Micucci, I. Tassi, M. Cifone, B. Cinque et al., Arf6: a new player in Fc??RIIIA lymphocyte-mediated cytotoxicity, Blood, vol.106, issue.2, pp.577-83, 2005.
DOI : 10.1182/blood-2004-10-4100

K. Fowler, N. Andrews, and J. Huleatt, Expression and Function of Synaptotagmin VII in CTLs, The Journal of Immunology, vol.178, issue.3, pp.1498-504, 2007.
DOI : 10.4049/jimmunol.178.3.1498

C. Capuano, R. Paolini, R. Molfetta, L. Frati, A. Santoni et al., PIP2-dependent regulation of Munc13-4 endocytic recycling: impact on the cytolytic secretory pathway, Blood, vol.119, issue.10, pp.2252-62, 2012.
DOI : 10.1182/blood-2010-12-324160

URL : https://hal.archives-ouvertes.fr/pasteur-00942686

D. Liu, Y. Bryceson, T. Meckel, G. Vasiliver-shamis, M. Dustin et al., Integrin-Dependent Organization and Bidirectional Vesicular Traffic at Cytotoxic Immune Synapses, Immunity, vol.31, issue.1, pp.99-109, 2009.
DOI : 10.1016/j.immuni.2009.05.009

URL : http://doi.org/10.1016/j.immuni.2009.05.009

P. Li, G. Zheng, Y. Yang, C. Zhang, P. Xiong et al., Granzyme B is recovered by natural killer cells via clathrin-dependent endocytosis, Cellular and Molecular Life Sciences, vol.395, issue.18, pp.3197-208, 2010.
DOI : 10.1007/s00018-010-0377-8

R. Bhat and C. Watzl, Serial Killing of Tumor Cells by Human Natural Killer Cells ??? Enhancement by Therapeutic Antibodies, PLoS ONE, vol.36, issue.3, 2007.
DOI : 10.1371/journal.pone.0000326.g006

P. Choi and T. Mitchison, Imaging burst kinetics and spatial coordination during serial killing by single natural killer cells, Proceedings of the National Academy of Sciences, vol.110, issue.16, pp.6488-93, 2013.
DOI : 10.1073/pnas.1221312110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631668

B. Vanherberghen, P. Olofsson, E. Forslund, M. Sternberg-simon, M. Khorshidi et al., Classification of human natural killer cells based on migration behavior and cytotoxic response, Blood, vol.121, issue.8, pp.1326-1360, 2013.
DOI : 10.1182/blood-2012-06-439851

S. Isaaz, K. Baetz, K. Olsen, E. Podack, and G. Griffiths, Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway, European Journal of Immunology, vol.265, issue.4, pp.1071-1080, 1995.
DOI : 10.1002/eji.1830250432

D. Paolo, G. Moskowitz, H. Gipson, K. Wenk, M. Voronov et al., Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking, Nature, vol.78, issue.7007, pp.415-437, 2004.
DOI : 10.1038/41267

L. Arneson, C. Segovis, T. Gomez, R. Schoon, C. Dick et al., Dynamin 2 Regulates Granule Exocytosis during NK Cell-Mediated Cytotoxicity, The Journal of Immunology, vol.181, issue.10, pp.6995-7001, 2008.
DOI : 10.4049/jimmunol.181.10.6995

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692694/pdf

S. Guia, B. Jaeger, S. Piatek, S. Mailfert, T. Trombik et al., Confinement of Activating Receptors at the Plasma Membrane Controls Natural Killer Cell Tolerance, Science Signaling, vol.4, issue.167, 2011.
DOI : 10.1126/scisignal.2001608

URL : https://hal.archives-ouvertes.fr/hal-00609667

D. Liu, M. Peterson, and E. Long, The Adaptor Protein Crk Controls Activation and Inhibition of Natural Killer Cells, Immunity, vol.36, issue.4, pp.600-611, 2012.
DOI : 10.1016/j.immuni.2012.03.007