N. Wei, G. Serino, and X. Deng, The COP9 signalosome: more than a protease, Trends in Biochemical Sciences, vol.33, issue.12, pp.592-600, 2008.
DOI : 10.1016/j.tibs.2008.09.004

D. Bosu and E. Kipreos, Cullin-RING ubiquitin ligases: global regulation and activation cycles, Cell Division, vol.3, issue.1, 2008.
DOI : 10.1186/1747-1028-3-7

URL : http://doi.org/10.1186/1747-1028-3-7

S. Lyapina, G. Cope, A. Shevchenko, G. Serino, T. Tsuge et al., Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome, Science, vol.292, issue.5520, pp.1382-1385, 2001.
DOI : 10.1126/science.1059780

C. Schwechheimer, G. Serino, J. Callis, W. Crosby, S. Lyapina et al., Interactions of the COP9 Signalosome with the E3 Ubiquitin Ligase SCFTIR1 in Mediating Auxin Response, Science, vol.292, issue.5520, pp.1379-1382, 2001.
DOI : 10.1126/science.1059776

G. Cope, G. Suh, L. Aravind, S. Schwarz, S. Zipursky et al., Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1, Csn5 in cleavage of Nedd8 from Cul1, pp.608-611, 2002.
DOI : 10.1126/science.1075901

G. Serino and E. Pick, Duplication and familial promiscuity within the proteasome lid and COP9 signalosome kin complexes, Plant Science, vol.203, issue.204, pp.89-97, 2013.
DOI : 10.1016/j.plantsci.2012.12.018

URL : https://hal.archives-ouvertes.fr/pasteur-00957426

D. Duda, L. Borg, D. Scott, H. Hunt, M. Hammel et al., Structural Insights into NEDD8 Activation of Cullin-RING Ligases: Conformational Control of Conjugation, Cell, vol.134, issue.6, pp.995-1006, 2008.
DOI : 10.1016/j.cell.2008.07.022

T. Kawakami, T. Chiba, T. Suzuki, K. Iwai, K. Yamanaka et al., NEDD8 recruits E2-ubiquitin to SCF E3 ligase, The EMBO Journal, vol.20, issue.15, pp.4003-4012, 2001.
DOI : 10.1093/emboj/20.15.4003

M. Read, J. Brownell, T. Gladysheva, M. Hottelet, L. Parent et al., Nedd8 Modification of Cul-1 Activates SCFbeta TrCP-Dependent Ubiquitination of Ikappa Balpha, Molecular and Cellular Biology, vol.20, issue.7, pp.2326-2333, 2000.
DOI : 10.1128/MCB.20.7.2326-2333.2000

A. Saha and R. Deshaies, Multimodal Activation of the Ubiquitin Ligase SCF by Nedd8 Conjugation, Molecular Cell, vol.32, issue.1, pp.21-31, 2008.
DOI : 10.1016/j.molcel.2008.08.021

G. Cope and R. Deshaies, Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels, BMC Biochem, vol.7, issue.1, 2006.

S. Denti, M. Fernandez-sanchez, L. Rogge, and E. Bianchi, The COP9 Signalosome Regulates Skp2 Levels and Proliferation of Human Cells, Journal of Biological Chemistry, vol.281, issue.43, pp.32188-32196, 2006.
DOI : 10.1074/jbc.M604746200

S. Wee, R. Geyer, T. Toda, and D. Wolf, CSN facilitates Cullin???RING ubiquitin ligase function by counteracting autocatalytic adapter instability, Nature Cell Biology, vol.7, issue.4, pp.387-391, 2005.
DOI : 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y

E. Emberley, R. Mosadeghi, and R. Deshaies, Deconjugation of Nedd8 from Cul1 Is Directly Regulated by Skp1-F-box and Substrate, and the COP9 Signalosome Inhibits Deneddylated SCF by a Noncatalytic Mechanism, Journal of Biological Chemistry, vol.287, issue.35, pp.29679-29689, 2012.
DOI : 10.1074/jbc.M112.352484

R. Enchev, D. Scott, P. Da-fonseca, A. Schreiber, J. Monda et al., Structural Basis for a Reciprocal Regulation between SCF and CSN, Cell Reports, vol.2, issue.3, pp.616-627, 2012.
DOI : 10.1016/j.celrep.2012.08.019

E. Fischer, A. Scrima, K. B?-ohm, S. Matsumoto, G. Lingaraju et al., The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation, Cell, vol.147, issue.5, pp.1024-1039, 2011.
DOI : 10.1016/j.cell.2011.10.035

Z. Zhou, Y. Wang, G. Cai, and Q. He, Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function, PLoS Genet, vol.8, 2012.

Z. Yu, O. Kleifeld, A. Lande-atir, M. Bsoul, M. Kleiman et al., Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome, Molecular Biology of the Cell, vol.22, issue.7, pp.911-920, 2011.
DOI : 10.1091/mbc.E10-08-0655

V. Maytal-kivity, E. Pick, R. Piran, K. Hofmann, and M. Glickman, The COP9 signalosome-like complex in S. cerevisiae and links to other PCI complexes, The International Journal of Biochemistry & Cell Biology, vol.35, issue.5, pp.706-715, 2003.
DOI : 10.1016/S1357-2725(02)00378-3

V. Maytal-kivity, R. Piran, E. Pick, K. Hofmann, and M. Glickman, COP9 signalosome components play a role in the mating pheromone response of S. cerevisiae, EMBO Reports, vol.3, issue.12, pp.1215-1221, 2002.
DOI : 10.1093/embo-reports/kvf235

S. Wee, B. Hetfeld, W. Dubiel, D. Wolf, A. Golan et al., Conservation of the COP9/signalosome in budding yeast, BMC Genet PLoS ONE, vol.3, issue.7, p.43980, 2002.

A. Zemla, Y. Thomas, S. Kedziora, A. Knebel, N. Wood et al., CSN- and CAND1-dependent remodelling of the budding yeast SCF complex, Nature Communications, vol.428, 1641.
DOI : 10.1038/ncomms2628

URL : https://hal.archives-ouvertes.fr/hal-00966127

V. De-cesare, D. Maria, V. Salvi, C. Licursi, V. Rinaldi et al., Role of the COP9 signalosome in transcription modulation of genes involved in lipid metabolism and ergosterol biosynthesis in S. cerevisiae, FEBS J, vol.278, issue.83, 2011.

G. Braus, S. Irniger, and O. Bayram, Fungal development and the COP9 signalosome, Current Opinion in Microbiology, vol.13, issue.6, pp.672-676, 2010.
DOI : 10.1016/j.mib.2010.09.011

URL : https://hal.archives-ouvertes.fr/hal-00580344

A. Boorsma, B. Foat, D. Vis, F. Klis, and H. Bussemaker, T-profiler: scoring the activity of predefined groups of genes using gene expression data, Nucleic Acids Research, vol.33, issue.Web Server, pp.592-595, 2005.
DOI : 10.1093/nar/gki484

C. Harbison, D. Gordon, T. Lee, N. Rinaldi, K. Macisaac et al., Transcriptional regulatory code of a eukaryotic genome, Nature, vol.18, issue.7004, pp.99-104, 2004.
DOI : 10.1093/bioinformatics/15.7.607

K. Pfeifer, K. Kim, S. Kogan, and L. Guarente, Functional dissection and sequence of yeast HAP1 activator, Cell, vol.56, issue.2, pp.291-301, 1989.
DOI : 10.1016/0092-8674(89)90903-3

S. Smith, P. Kumar, I. Johnston, and J. Rosamond, SCM4, a gene that suppresses mutant cdc4 function in budding yeast, MGG Molecular & General Genetics, vol.28, issue.2-3, pp.285-291, 1992.
DOI : 10.1007/BF00279372

D. Eide, Homeostatic and Adaptive Responses to Zinc Deficiency in Saccharomyces cerevisiae, Journal of Biological Chemistry, vol.284, issue.28, pp.18565-18569, 2009.
DOI : 10.1074/jbc.R900014200

K. Mukhopadhyay, T. Prasad, P. Saini, T. Pucadyil, A. Chattopadhyay et al., Membrane Sphingolipid-Ergosterol Interactions Are Important Determinants of Multidrug Resistance in Candida albicans, Antimicrobial Agents and Chemotherapy, vol.48, issue.5, pp.1778-1787, 2004.
DOI : 10.1128/AAC.48.5.1778-1787.2004

M. Pfaller, J. Riley, and T. Koerner, Effects of terconazole and other azole antifungal agents on the sterol and carbohydrate composition of Candida albicans, Diagnostic Microbiology and Infectious Disease, vol.13, issue.1, pp.31-35, 1990.
DOI : 10.1016/0732-8893(90)90050-6

H. Sanati, P. Belanger, R. Fratti, and M. Ghannoum, A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei, Antimicrob Agents Chemother, vol.41, pp.2492-2496, 1997.

A. Welihinda, A. Beavis, and R. Trumbly, Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1193, issue.1, pp.107-117, 1994.
DOI : 10.1016/0005-2736(94)90339-5

S. Loukin, C. Kung, and Y. Saimi, Lipid perturbations sensitize osmotic down-shock activated Ca2+ influx, a yeast "deletome" analysis, The FASEB Journal, vol.21, issue.8, pp.1813-1820, 2007.
DOI : 10.1096/fj.06-7898com

D. Yuan, Dithizone Staining of Intracellular Zinc: An Unexpected and Versatile Counterscreen for Auxotrophic Marker Genes in Saccharomyces cerevisiae, PLoS ONE, vol.6, issue.10, 2011.
DOI : 10.1371/journal.pone.0025830.s002

B. Ezaki and E. Nakakihara, Possible involvement of GDI1 protein, a GDP dissociation inhibitor related to vesicle transport, in an amelioration of zinc toxicity in Saccharomyces cerevisiae, Yeast, vol.403, issue.1, pp.17-24, 2012.
DOI : 10.1002/yea.1913

J. 38-yen, K. Flick, C. Papagiannis, R. Mathur, A. Tyrrell et al., Signal-Induced Disassembly of the SCF Ubiquitin Ligase Complex by Cdc48/p97, Molecular Cell, vol.48, issue.2, pp.288-297, 2012.
DOI : 10.1016/j.molcel.2012.08.015

J. 39-jungmann, H. Reins, C. Schobert, and S. Jentsch, Resistance to cadmium mediated by ubiquitin-dependent proteolysis, Nature, vol.361, issue.6410, pp.369-371, 1993.
DOI : 10.1038/361369a0

L. Ma, H. Zhao, and X. Deng, Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development, Development, vol.130, issue.5, pp.969-981, 2003.
DOI : 10.1242/dev.00281

D. Xirodimas, A. Sundqvist, A. Nakamura, L. Shen, C. Botting et al., Ribosomal proteins are targets for the NEDD8 pathway, EMBO reports, vol.9, issue.3, pp.280-286, 2008.
DOI : 10.1016/j.cell.2004.06.016

K. Nahlik, M. Dumkow, O. Bayram, K. Helmstaedt, S. Busch et al., The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development, Molecular Microbiology, vol.105, issue.4, pp.964-979, 2010.
DOI : 10.1111/j.1365-2958.2010.07384.x

E. Oron, T. Tuller, L. Li, N. Rozovsky, D. Yekutieli et al., Genomic analysis of COP9 signalosome function in Drosophila melanogaster reveals a role in temporal regulation of gene expression, Molecular Systems Biology, vol.23, issue.108, 2007.
DOI : 10.1038/msb4100150

C. Schwechheimer, Auxin responses in mutants of the Arabidopsis constitutive photomorphogenic9 signalosome, Plant Physiol, vol.147, pp.1369-1379, 2008.

M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, E. Spear et al., The Genetic Landscape of a Cell, Science, vol.327, issue.5964, pp.425-431, 2010.
DOI : 10.1126/science.1180823

F. Chen, J. Zhou, Z. Shi, L. Liu, G. Du et al., Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae, pp.1172-1179, 2010.

L. Galdieri and A. Vancura, Acetyl-CoA Carboxylase Regulates Global Histone Acetylation, Journal of Biological Chemistry, vol.287, issue.28, pp.23865-23876, 2012.
DOI : 10.1074/jbc.M112.380519

J. Nielsen, Systems biology of lipid metabolism: From yeast to human, FEBS Letters, vol.275, issue.24, pp.3905-3913, 2009.
DOI : 10.1016/j.febslet.2009.10.054

D. Fowler, S. Cooper, J. Stephany, N. Hendon, S. Nelson et al., Suppression of statin effectiveness by copper and zinc in yeast and human cells, Mol. BioSyst., vol.80, issue.Suppl 8, pp.533-544, 2011.
DOI : 10.1039/C0MB00166J

A. Uttenweiler, H. Schwarz, H. Neumann, and A. Mayer, The Vacuolar Transporter Chaperone (VTC) Complex Is Required for Microautophagy, Molecular Biology of the Cell, vol.18, issue.1, pp.166-175, 2007.
DOI : 10.1091/mbc.E06-08-0664

M. Pagani, A. Casamayor, R. Serrano, S. Atrian, and J. Ari~, Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study, Molecular Microbiology, vol.276, issue.2, pp.521-537, 2007.
DOI : 10.1016/S1367-5931(98)80063-X

C. Wu, S. Roje, F. Sandoval, A. Bird, D. Winge et al., Repression of Sulfate Assimilation Is an Adaptive Response of Yeast to the Oxidative Stress of Zinc Deficiency, Journal of Biological Chemistry, vol.284, issue.40, pp.27544-27556, 2009.
DOI : 10.1074/jbc.M109.042036

D. Eide and L. Guarente, Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae, Journal of General Microbiology, vol.138, issue.2, pp.347-354, 1992.
DOI : 10.1099/00221287-138-2-347

S. Lemoine, F. Combes, N. Servant, and S. Crom, Goulphar: rapid access and expertise for standard twocolor microarray normalization methods, BMC Bioinformatics, vol.7, issue.1, p.467, 2006.
DOI : 10.1186/1471-2105-7-467

URL : https://hal.archives-ouvertes.fr/inserm-00122139

R. Edgar, M. Domrachev, and A. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Research, vol.30, issue.1, pp.207-210, 2002.
DOI : 10.1093/nar/30.1.207

K. Livak and T. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method, pp.402-408, 2001.

J. Wi-sniewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nature Methods, vol.6, issue.5, pp.359-362, 2009.
DOI : 10.1038/nmeth.1322

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.7, issue.12, pp.1367-1372, 2008.
DOI : 10.1038/nprot.2007.261

J. Cox, N. Neuhauser, A. Michalski, R. Scheltema, J. Olsen et al., Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment, Journal of Proteome Research, vol.10, issue.4, pp.1794-1805, 2011.
DOI : 10.1021/pr101065j

D. Gachotte, J. Eckstein, R. Barbuch, T. Hughes, C. Roberts et al., A novel gene conserved from yeast to humans is involved in sterol biosynthesis, J Lipid Res, vol.42, pp.150-154, 2001.