S. Halstead, S. Mahalingam, M. Marovich, S. Ubol, and D. Mosser, Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes, The Lancet Infectious Diseases, vol.10, issue.10, pp.712-722, 2010.
DOI : 10.1016/S1473-3099(10)70166-3

E. Von-stebut and M. Udey, Requirements for Th1-dependent immunity against infection with Leishmania major, Microbes and Infection, vol.6, issue.12, pp.1102-1109, 2004.
DOI : 10.1016/j.micinf.2004.05.024

S. Gossage, M. Rogers, and P. Bates, Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle, International Journal for Parasitology, vol.33, issue.10, pp.1027-1034, 2003.
DOI : 10.1016/S0020-7519(03)00142-5

T. Naderer and M. Mcconville, The Leishmania-macrophage interaction: a metabolic perspective, Cellular Microbiology, vol.278, issue.2, pp.301-308, 2008.
DOI : 10.1111/j.1462-5822.2007.01096.x

A. Awasthi, R. Mathur, and B. Saha, Immune response to Leishmania infection, Indian J Med Res, vol.119, pp.238-258, 2004.

S. Gordon, Alternative activation of macrophages, Nature Reviews Immunology, vol.3, issue.1, pp.23-35, 2003.
DOI : 10.1038/nri978

URL : https://hal.archives-ouvertes.fr/hal-00474829

S. Reiner and R. Locksley, The Regulation of Immunity to Leishmania Major, Annual Review of Immunology, vol.13, issue.1, pp.151-177, 1995.
DOI : 10.1146/annurev.iy.13.040195.001055

C. Bogdan, Nitric oxide and the immune response, Nature Immunology, vol.14, issue.11, pp.907-916, 2001.
DOI : 10.1038/ni1001-907

R. Mukbel, C. Patten, . Jr, K. Gibson, M. Ghosh et al., Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide, Am J Trop Med Hyg, vol.76, pp.669-675, 2007.

S. Bhattacharyya, S. Ghosh, B. Dasqupta, D. Mazumder, and S. Roy, Chemokine???Induced Leishmanicidal Activity in Murine Macrophages via the Generation of Nitric Oxide, The Journal of Infectious Diseases, vol.185, issue.12, pp.1704-1708, 2002.
DOI : 10.1086/340820

O. Brandonisio, M. Panaro, I. Fumarola, M. Sisto, and D. Leogrande, Macrophage chemotactic protein-1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages, Clinical and Experimental Medicine, vol.2, issue.3, pp.125-129, 2002.
DOI : 10.1007/s102380200017

R. Dey, N. Majumder, S. Bhattacharjee, S. Majumdar, and S. Banerjee, Induction of Host Protective Th1 Immune Response by Chemokines in Leishmania donovani-infected BALB/c Mice, Scandinavian Journal of Immunology, vol.169, issue.6, pp.671-683, 2007.
DOI : 10.1084/jem.180.1.223

P. Das, A. Lahiri, A. Lahiri, and D. Chakravortty, Modulation of the Arginase Pathway in the Context of Microbial Pathogenesis: A Metabolic Enzyme Moonlighting as an Immune Modulator, PLoS Pathogens, vol.172, issue.2, p.1000899, 2010.
DOI : 10.1371/journal.ppat.1000899.t001

Y. Skeiky, J. Guderian, D. Benson, O. Bacelar, and E. Carvalho, A recombinant Leishmania antigen that stimulates human peripheral blood mononuclear cells to express a Th1-type cytokine profile and to produce interleukin 12, Journal of Experimental Medicine, vol.181, issue.4, pp.1527-1537, 1995.
DOI : 10.1084/jem.181.4.1527

J. Silverman, S. Chan, D. Robinson, D. Dwyer, and D. Nandan, Proteomic analysis of the secretome of Leishmania donovani, Genome Biology, vol.9, issue.2, p.35, 2008.
DOI : 10.1186/gb-2008-9-2-r35

J. Silverman, J. Clos, C. Oliveira, O. Shirvani, and Y. Fang, and communication with macrophages, Journal of Cell Science, vol.123, issue.6, pp.842-852, 2010.
DOI : 10.1242/jcs.056465

M. Barhoumi, A. Garnaoui, B. Kaabi, N. Tanner, and I. Guizani, Leishmania infantum LeIF and its recombinant polypeptides modulate interleukin IL-12p70, IL-10 and tumour necrosis factor-?? production by human monocytes, Parasite Immunology, vol.7, issue.10, pp.583-588, 2011.
DOI : 10.1111/j.1365-3024.2011.01320.x

URL : https://hal.archives-ouvertes.fr/pasteur-00658263

M. Barhoumi, A. Meddeb-garnaoui, N. Tanner, J. Banroques, and B. Kaabi, eIF4A, modulate interleukin (IL)-12, IL-10 and tumour necrosis factor-alpha production by human monocytes, Parasite Immunology, vol.213, issue.5-6, pp.194-199, 2013.
DOI : 10.1111/pim.12026

URL : https://hal.archives-ouvertes.fr/pasteur-00860036

Y. Skeiky, R. Coler, M. Brannon, E. Stromberg, and K. Greeson, Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPLS adjuvant, Vaccine, vol.20, issue.27-28, pp.3292-3303, 2002.
DOI : 10.1016/S0264-410X(02)00302-X

R. Coler, Y. Goto, L. Bogatzki, V. Raman, and S. Reed, Leish-111f, a Recombinant Polyprotein Vaccine That Protects against Visceral Leishmaniasis by Elicitation of CD4+ T Cells, Infection and Immunity, vol.75, issue.9, pp.4648-4654, 2007.
DOI : 10.1128/IAI.00394-07

S. Sakai, Y. Takashima, Y. Matsumoto, S. Reed, and Y. Hayashi, Intranasal immunization with Leish-111f induces IFN-gamma production and protects mice from Leishmania major infection, Vaccine, vol.2, pp.2207-2213, 2010.

R. Badaro, I. Lobo, M. Nakatani, A. Muiñ-os, and E. Netto, Successful use of a defined antigen/GM-CSF adjuvant vaccine to treat mucosal leishmaniasis refractory to antimony: a case report, Brazilian Journal of Infectious Diseases, vol.5, issue.4, pp.223-232, 2001.
DOI : 10.1590/S1413-86702001000400008

P. Scott, Development and Regulation of Cell-Mediated Immunity in Experimental Leishmaniasis, Immunologic Research, vol.27, issue.2-3, pp.489-498, 2003.
DOI : 10.1385/IR:27:2-3:489

E. Mougneau, F. Bihl, and N. Glaichenhaus, Cell biology and immunology of Leishmania, Immunological Reviews, vol.180, issue.1, pp.286-96, 2011.
DOI : 10.1111/j.1600-065X.2010.00983.x

URL : https://hal.archives-ouvertes.fr/hal-00726034

P. Probst, Y. Skeiky, M. Steeves, A. Gervassi, and K. Grabstein, ALeishmania protein that modulates interleukin (IL)-12, IL-10 and tumor necrosis factor-?? production and expression of B7-1 in human monocyte-derived antigen-presenting cells, European Journal of Immunology, vol.40, issue.10, pp.2634-2642, 1997.
DOI : 10.1002/eji.1830271024

M. Barhoumi, N. Tanner, J. Banroques, P. Linder, and I. Guizani, Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast, FEBS Journal, vol.24, issue.22, pp.5086-5100, 2006.
DOI : 10.1016/j.ceb.2005.04.005

URL : https://hal.archives-ouvertes.fr/hal-00131023

J. Kyriazis, N. Aligiannis, P. Polychronopoulos, A. Skaltsounis, and E. Dotsika, Leishmanicidal activity assessment of olive tree extracts, Phytomedicine, vol.20, issue.3-4, pp.275-281, 2013.
DOI : 10.1016/j.phymed.2012.11.013

J. Mikus and D. Steverding, A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue??, Parasitology International, vol.48, issue.3, pp.265-269, 2000.
DOI : 10.1016/S1383-5769(99)00020-3

D. Tsikas, Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the l-arginine/nitric oxide area of research, Journal of Chromatography B, vol.851, issue.1-2, pp.51-70, 2007.
DOI : 10.1016/j.jchromb.2006.07.054

A. Ding, C. Nathan, and D. Stuehr, Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production, J Immunol, vol.141, pp.2407-2412, 1988.

E. Eruslanov and S. Kusmartsev, Identification of ROS Using Oxidized DCFDA and Flow-Cytometry, Methods Mol Biol, vol.594, pp.57-72, 2010.
DOI : 10.1007/978-1-60761-411-1_4

S. Kar, A. Ukil, G. Sharma, and P. Das, MAPK-directed phosphatases preferentially regulate pro- and anti-inflammatory cytokines in experimental visceral leishmaniasis: involvement of distinct protein kinase C isoforms, Journal of Leukocyte Biology, vol.88, issue.1, pp.9-20, 2010.
DOI : 10.1189/jlb.0909644

P. Tsagozis, E. Karagouni, and E. Dotsika, CD8+ T cells with parasite-specific cytotoxic activity and a Tc1 profile of cytokine and chemokine secretion develop in experimental visceral leishmaniasis, Parasite Immunology, vol.171, issue.11-12, pp.569-579, 2003.
DOI : 10.1084/jem.181.1.387

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-408, 2001.
DOI : 10.1006/meth.2001.1262

M. Olivier, D. Gregory, and G. Forget, Subversion Mechanisms by Which Leishmania Parasites Can Escape the Host Immune Response: a Signaling Point of View, Clinical Microbiology Reviews, vol.18, issue.2, pp.293-305, 2005.
DOI : 10.1128/CMR.18.2.293-305.2005

T. Van-assche, M. Deschacht, R. Da-luz, L. Maes, and P. Cos, Leishmania???macrophage interactions: Insights into the redox biology, Free Radical Biology and Medicine, vol.51, issue.2, pp.337-351, 2011.
DOI : 10.1016/j.freeradbiomed.2011.05.011

R. Strieter, T. Standiford, G. Huffnagle, L. Colletti, and N. Lukacs, The good, the bad, and the ugly.'' The role of chemokines in models of human disease, J Immunol, vol.156, pp.3583-3586, 1996.

M. Baggiolini, B. Dewald, and B. Moser, Human Chemokines: An Update, Annual Review of Immunology, vol.15, issue.1, pp.675-705, 1997.
DOI : 10.1146/annurev.immunol.15.1.675

M. Baggiolini, Chemokines and leukocyte traffic, Nature, vol.392, issue.6676, pp.565-568, 1998.
DOI : 10.1038/33340

M. Locati and P. Murphy, CHEMOKINES AND CHEMOKINE RECEPTORS: Biology and Clinical Relevance in Inflammation and AIDS, Annual Review of Medicine, vol.50, issue.1, pp.425-440, 1999.
DOI : 10.1146/annurev.med.50.1.425

N. Sato, W. Kuziel, P. Melby, R. Reddick, and V. Kostecki, Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice, J Immunol, vol.163, pp.5519-5525, 1999.

L. Gu, S. Tseng, R. Horner, C. Tam, and M. Loda, Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1, Nature, vol.404, issue.6776, pp.407-411, 2000.
DOI : 10.1038/35006097

N. Sato, S. Ahuja, M. Quinones, V. Kostecki, and R. Reddick, Cc Chemokine Receptor (Ccr)2 Is Required for Langerhans Cell Migration and Localization of T Helper Cell Type 1 (Th1)-Inducing Dendritic Cells, The Journal of Experimental Medicine, vol.61, issue.2, pp.205-218, 2000.
DOI : 10.1126/science.286.5447.2159

S. Green, M. Meltzer, J. Hibbs, . Jr, and C. Nacy, Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent killing mechanism, J Immunol, vol.144, pp.278-283, 1990.

Q. Li and I. Verma, NF-??B regulation in the immune system, Nature Reviews Immunology, vol.2, issue.10, pp.725-759, 2002.
DOI : 10.1038/nri910

H. Murray, H. Masur, and J. Keithly, Cell-mediated immune response in experimental visceral leishmaniasis. I. Correlation between resistance to Leishmania donovani and lymphokine-generating capacity, J Immunol, vol.129, pp.344-350, 1982.

F. Liew, D. Xu, and W. Chan, Immune effector mechanism in parasitic infections, Immunology Letters, vol.65, issue.1-2, pp.101-104, 1999.
DOI : 10.1016/S0165-2478(98)00131-X

S. Green, R. Crawford, J. Hockmeyer, M. Meltzer, and C. Nacy, Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factoralpha, J Immunol, vol.145, pp.4290-4297, 1990.

F. Liew, S. Millott, C. Parkinson, R. Palmer, and S. Moncada, Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine, 1990.

M. Sadick, F. Heinzel, B. Holaday, R. Pu, and R. Dawkins, Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism, Journal of Experimental Medicine, vol.171, issue.1, pp.115-127, 1990.
DOI : 10.1084/jem.171.1.115

S. Stenger, H. Thüring, M. Röllinghoff, and C. Bogdan, Tissue expression of inducible nitric oxide synthase is closely associated with resistance to Leishmania major, Journal of Experimental Medicine, vol.180, issue.3, pp.783-793, 1994.
DOI : 10.1084/jem.180.3.783

J. Silverman and N. Reiner, Leishmania Exosomes Deliver Preemptive Strikes to Create an Environment Permissive for Early Infection, Frontiers in Cellular and Infection Microbiology, vol.1, p.26, 2011.
DOI : 10.3389/fcimb.2011.00026

S. Zhang, C. Kim, S. Batra, J. Mckerrow, and P. Loke, Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines, PLoS Neglected Tropical Diseases, vol.3, issue.18, p.648, 2010.
DOI : 10.1371/journal.pntd.0000648.s014

F. Liew, Y. Li, and S. Millot, Tumor necrosis factor-alpha synergizes with IFNgamma in mediating killing of Leishmania major through the induction of nitric oxide, J Immunol, vol.145, pp.4306-4310, 1990.

F. Liew, Y. Li, D. Moss, C. Parkinson, and M. Rogers, Resistance toLeishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages, European Journal of Immunology, vol.132, issue.12, pp.3009-3014, 1991.
DOI : 10.1002/eji.1830211216

C. Nacy, A. Meierovics, M. Belosevic, and S. Green, Tumor Necrosis Factor-Alpha: Central Regulatory Cytokine in the Induction of Macrophage Antimicrobial Activities, Pathobiology, vol.59, issue.3, pp.182-184, 1991.
DOI : 10.1159/000163640

F. Cunha, J. Assreuy, D. Xu, I. Charles, and F. Liew, Repeated induction of nitric oxide synthase and leishmanicidal activity in murine macrophages, European Journal of Immunology, vol.49, issue.6, pp.1385-1388, 1993.
DOI : 10.1002/eji.1830230631

T. Evans, L. Thai, D. Granger, J. Hibbs, and . Jr, Effect of in vivo inhibition of nitric oxide production in murine leishmaniasis, J Immunol, vol.151, pp.907-915, 1993.

J. Assreuy, F. Cunha, M. Epperlein, A. Noranha-dutra, O. Donnell et al., Production of nitric oxide and superoxide by activated macrophages and killing ofLeishmania major, European Journal of Immunology, vol.18, issue.3, pp.672-676, 1994.
DOI : 10.1002/eji.1830240328

K. Gantt, T. Goldman, M. Mccormick, M. Miller, and S. Jeronimo, Oxidative Responses of Human and Murine Macrophages During Phagocytosis of Leishmania chagasi, The Journal of Immunology, vol.167, issue.2, pp.893-901, 2001.
DOI : 10.4049/jimmunol.167.2.893

M. Panaro, A. Acquafredda, S. Lisi, D. Lofrumento, and T. Trotta, Inducible nitric oxide synthase and nitric oxide production inLeishmania infantum-infected human macrophages stimulated with interferon-?? and bacterial lipopolysaccharide, International Journal of Clinical & Laboratory Research, vol.1380, issue.3, pp.122-127, 1999.
DOI : 10.1007/s005990050076

H. Murray, Susceptibility of leishmania to oxygen intermediates and killing by normal macrophages, Journal of Experimental Medicine, vol.153, issue.5, pp.1302-1315, 1981.
DOI : 10.1084/jem.153.5.1302

J. Stafford, N. Neumann, and M. Belosevic, Macrophage-Mediated Innate Host Defense Against Protozoan Parasites, Critical Reviews in Microbiology, vol.28, issue.3, pp.187-248, 2002.
DOI : 10.1080/1040-840291046731

S. Bisti, G. Konidou, J. Boelaert, M. Lebastard, and K. Soteriadou, The prevention of the growth of Leishmania major progeny in BALB/c iron-loaded mice: a process coupled to increased oxidative burst, the amplitude and duration of which depend on initial parasite developmental stage and dose, Microbes and Infection, vol.8, issue.6, pp.1464-1472, 2006.
DOI : 10.1016/j.micinf.2006.01.014

R. Kumar, K. Pai, and S. Sundar, Reactive oxygen intermediates, nitrite and IFN-gamma in Indian visceral leishmaniasis, Clinical and Experimental Immunology, vol.183, issue.2, pp.262-265, 2001.
DOI : 10.1084/jem.189.4.741

P. Kumar, K. Pai, H. Pandey, and S. Sundar, NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of visceral leishmaniasis patients, Journal of Medical Microbiology, vol.51, issue.10, pp.832-836, 2002.
DOI : 10.1099/0022-1317-51-10-832

R. Basu, S. Bhaumik, J. Basu, K. Naskar, and T. De, Kinetoplastid Membrane Protein-11 DNA Vaccination Induces Complete Protection against Both Pentavalent Antimonial-Sensitive and -Resistant Strains of Leishmania donovani That Correlates with Inducible Nitric Oxide Synthase Activity and IL-4 Generation: Evidence for Mixed Th1- and Th2-Like Responses in Visceral Leishmaniasis, The Journal of Immunology, vol.174, issue.11, pp.7160-7171, 2005.
DOI : 10.4049/jimmunol.174.11.7160

A. Sharma and R. Madhubala, Ubiquitin Conjugation of Open Reading Frame F DNA Vaccine Leads to Enhanced Cell-Mediated Immune Response and Induces Protection against Both Antimony-Susceptible and -Resistant Strains of Leishmania donovani, The Journal of Immunology, vol.183, issue.12, pp.7719-7731, 2009.
DOI : 10.4049/jimmunol.0900132

A. Matsukawa, C. Hogaboam, N. Lukacs, P. Lincoln, and H. Evanoff, Pivotal Role of the CC Chemokine, Macrophage-Derived Chemokine, in the Innate Immune Response, The Journal of Immunology, vol.164, issue.10, pp.5362-5368, 2000.
DOI : 10.4049/jimmunol.164.10.5362

O. Garra, A. Mcevoy, L. Zlotnik, and A. , T-cell subsets: Chemokine receptors guide the way, Current Biology, vol.8, issue.18, pp.646-649, 1998.
DOI : 10.1016/S0960-9822(07)00413-7

F. Sallusto, C. Mackay, and A. Lanzavecchia, The Role of Chemokine Receptors in Primary, Effector, and Memory Immune Responses, Annual Review of Immunology, vol.18, issue.1, pp.593-620, 2000.
DOI : 10.1146/annurev.immunol.18.1.593

R. Dey, A. Sarkar, N. Majumder, B. Majumdar, S. Roychoudhury et al., Regulation of Impaired Protein Kinase C Signaling by Chemokines in Murine Macrophages during Visceral Leishmaniasis, Infection and Immunity, vol.73, issue.12, pp.8334-8344, 2005.
DOI : 10.1128/IAI.73.12.8334-8344.2005

D. Greenbaum, C. Colangelo, K. Williams, and M. Gerstein, Comparing protein abundance and mRNA expression levels on a genomic scale, Genome Biology, vol.4, issue.9, p.117, 2003.
DOI : 10.1186/gb-2003-4-9-117

T. Fahey, K. Tracey, P. Tekamp-olson, L. Cousens, and W. Jones, Macrophage inflammatory protein 1 modulates macrophage function, J Immunol, vol.148, pp.2764-2769, 1992.