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REPORT

Mutations in DNAH1, which Encodes an Inner Arm Heavy
Chain Dynein, Lead to Male Infertility from Multiple
Morphological Abnormalities of the Sperm Flagella

Mariem Ben Khelifa,1,2,3,15 Charles Coutton,1,2,4,15 Raoudha Zouari,5 Thomas Karaouzène,1,2

John Rendu,1,6,7 Marie Bidart,1,7 Sandra Yassine,1,2 Virginie Pierre,1,2 Julie Delaroche,1,7

Sylviane Hennebicq,1,2,8 Didier Grunwald,1,7 Denise Escalier,9 Karine Pernet-Gallay,1,7

Pierre-Simon Jouk,10,11 Nicolas Thierry-Mieg,10 Aminata Touré,12,13,14 Christophe Arnoult,1,2,16 and
Pierre F. Ray1,2,6,16,*

Ten to fifteen percent of couples are confronted with infertility and a male factor is involved in approximately half the cases. A genetic

etiology is likely inmost cases yet only few genes have been formally correlatedwithmale infertility. Homozygositymappingwas carried

out on a cohort of 20 North African individuals, including 18 index cases, presenting with primary infertility resulting from impaired

spermmotility caused by a mosaic of multiple morphological abnormalities of the flagella (MMAF) including absent, short, coiled, bent,

and irregular flagella. Five unrelated subjects out of 18 (28%) carried a homozygous variant in DNAH1, which encodes an inner dynein

heavy chain and is expressed in testis. RT-PCR, immunostaining, and electronic microscopy were carried out on samples from one of the

subjects with amutation located on a donor splice site. Neither the transcript nor the protein was observed in this individual, confirming

the pathogenicity of this variant. A general axonemal disorganization including mislocalization of the microtubule doublets and loss of

the inner dynein arms was observed. Although DNAH1 is also expressed in other ciliated cells, infertility was the only symptom of pri-

mary ciliary dyskinesia observed in affected subjects, suggesting that DNAH1 function in cilium is not as critical as in sperm flagellum.
Male infertility affects more than 20 million men world-

wide and represents a real health concern.1 It is a typical

multifactorial disorder with a strong genetic basis and

additional etiological factors such as urogenital infections,

immunological or endocrine diseases, attack from reactive

oxygen species (ROS), or perturbations from endocrine

disruptors. To date, despite substantial efforts made to

identify genes specifically involved in male infertility by

many teams including ours,2,3 only a handful of genes

have been formally correlated with human sperm defects.

Male infertility caused by impaired sperm motility (asthe-

nozoospermia) is also often observed in men with primary

ciliary dyskinesia (PCD), a group of mainly autosomal-

recessive disorders caused by dysfunctions of motile cilia

leading primarily to respiratory infections and often to

situs invertus. Recent research on PCD has been extremely

prolific and allowed the identification and characterization

of numerous proteins necessary for adequate axonemal

molecular structure and assembly (Table S1 available

online). The axoneme is a highly evolutionarily conserved

structure found in motile cilia and in sperm flagella,
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mainly composed of an intricate network of microtubules

and dyneins. Sperm parameters have not been systemati-

cally explored and are often only scarcely described

in manuscripts investigating PCD-affected individuals.

Although sperm flagella and motile cilia have a similar

axonemal structure based on the presence of nine periph-

eral microtubule doublets plus two central ones, they pre-

sent several differences that might explain why PCDs are

not always associated with asthenozoospermia.4 We note

that no mutations in axonemal genes have been described

as being involved exclusively in infertility without also

inducing PCD.

In the present study, we analyzed 20 subjects presenting

with asthenozoospermia resulting from a combination of

five morphological defects of the sperm flagella (absent,

short, bent, and coiled flagella and flagella of irregular

width) without any of the other PCD-associated symp-

toms. Similar phenotypes have been previously described

and named ‘‘dysplasia of the fibrous sheath,’’ ‘‘short tails,’’

or ‘‘stump tails.’’5–15 We propose to call this syndrome

‘‘multiple morphological anomalies of the flagella
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(MMAF),’’ a name that provides a more accurate descrip-

tion of this phenotype. We carried out a SNP whole-

genome scan on 20 individuals presenting with severe

MMAF. The study was approved by our local ethics com-

mittee; all individuals gave their signed informed consent

and national laws and regulations were respected. All indi-

viduals originated from North Africa (11 Tunisians, 7

Algerians, and 2 Libyans) and were treated in Tunis (Clin-

ique des Jasmins, Tunis, Tunisia) for primary infertility.

Twelve of the subjects were born from related parents,

usually first cousins. None of the subjects were related to

one another apart from three individuals (P1–P3) who

were brothers. All subjects had normal somatic karyotypes.

All sperm analyses were performed at least twice, in

accordance with the World Health Organization recom-

mendations.16 Subjects were recruited on the basis of the

identification of >5% of at least four of the aforemen-

tioned flagellar morphological abnormalities (absent,

short, coiled, bent, and irregular flagella) (Table 1). All

subjects presented with severe asthenozoospermia: 11

out of 20 subjects had no (0%) motility, 8 had sperm

motility <10%, and one (P6) had 35% motility. Saliva

was obtained from all participants via Oragene DNA Self-

Collection Kit (DNAgenotech) but only one subject (P3)

agreed to donate sperm and blood samples for research

use. During their medical consultation for infertility, all

subjects answered a health questionnaire focused on

PCD manifestations, and none indicated suffering from

any of the other symptoms encountered in PCD.

Homozygosity mapping was carried out with 250K Sty1

SNP mapping arrays (Affymetrix) on DNA extracted from

the 20 studied subjects’ saliva samples. Common regions

of homozygosity were identified with the homoSNP soft-

ware. After exclusion of the centromeric regions, we iden-

tified two regions located on chromosomes 3 and 20 with a

region of homozygosity > 1 Mb common to 10/20

analyzed individuals (Figure S1). In addition, 4 and 9 sub-

jects presented with a stretch of homozygosity > 15 Mb

overlapping chromosomes 20 and 3 regions, respectively.

All three brothers (P1–P3) were homozygous at the chro-

mosome 3 region, although only two of them were homo-

zygous at the chromosome 20 region. We excluded all

other regions of homozygosity because they did not fulfil

the following criteria: (1) more than eight individuals

including at least two of the brothers sharing a region of

homozygosity > 1 Mb and (2) presence of a potential

candidate gene in the region according to its expression

profile and/or presumed function. Finer analysis of the

chromosome 3 region showed that 15 individuals were

homozygous for two smaller subregions located at chr3:

46,745,396–47,606,570 and chr3: 52,111,974–53,028,375

(UCSC Genome Browser human reference genome build

hg17, Figure S1). Sixteen genes are annotated in the first

subregion (Table S2), among which only one gene (KIF9

[MIM 607910]) appeared as a good candidate; indeed,

studies in the protist Trypanosoma brucei showed that

kif9A (the mouse ortholog of human KIF9) is located in
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the axoneme and that its depletion alters motility.17 The

second subregion in chromosome 3 includes 28 genes

(Table S2). The dynein heavy chain 1 gene (DNAH1

[MIM 603332]) appeared as the best candidate gene

because it codes for an axonemal dynein heavy chain

and is expressed in various tissues including testis.18

Furthermore, asthenozoospermia was described in mice

lacking Dnahc1, the DNAH1 mouse ortholog (previously

named Mdhc7).19 Finally, among the ten genes located

in the selected region of chromosome 20 (chr20:

33,572,687–34,070,415), only SPAG4 (MIM 603038) ap-

peared as a good candidate: it was described in rat to be

associated with the axoneme in elongating spermatids

and epididymal sperm.20We therefore decided to sequence

KIF9 (RefSeq accession number NM_001134878.1),

DNAH1 (RefSeq NM_015512.4), and SPAG4 (RefSeq

NM_003116.1).

We sequenced the 12 exons and the intron boundaries

of SPAG4 in the 13 individuals homozygous at this locus,

and the 19 exons and intron boundaries of KIF9 in the

15 relevant individuals. We did not identify any likely

pathogenic variants in these two genes. We then

sequenced the 78 exons and intron boundaries of

DNAH1 in P3 (primer sequences available in Table S3).

We identified one homozygous splicing mutation

(c.11788�1G>A) in intron 73. The same homozygous mu-

tation was identified in the two other brothers (Figure S2).

We then sequenced DNAH1 for the 17 remaining subjects.

The same homozygous mutation (c.11788�1G>A) was

identified in one additional individual (P17). We identified

three other homozygous variants: another splicing muta-

tion (c.5094þ1G>A) in individual P9, a homozygous no-

stop mutation disrupting the stop codon in exon 78

(c.12796T>C [p.4266Glnext*21]) in individual P8, and a

homozygous missense variant in exon 23 in individual

P6 (c.3877G>A [p.Asp1293Asn]). The localization of the

DNAH1 mutations is presented in Figure 1. If we consider

only index cases, we identified 5 homozygous variants in

18 unrelated individuals (28%). None of these variants

were detected in our control cohort of 100 individuals of

North African origin. We note that the parents of the

subjects could not be analyzed to confirm the transmission

of the variants. We therefore cannot formally exclude the

possibility that some of the identified variants may be

hemizygous with a deletion on the other allele. However,

depending on its size, its position, and its effect on the

reading frame, a deleted allele would be at least as delete-

rious as the identified variants.

To evaluate the association of the variants with the

pathology, we compared their frequency in our cohort

with that in the Exome Variant Server (EVS) database. At

the four genomic positions of interest, the EVS data are

of sufficient coverage to provide genotype calls for at least

6,200 individuals, corresponding to 12,400 alleles. There

were no variant nucleotides identified at positions

c.5094þ1, c.11788�1, or c.12796, and only one A allele

was identified out of 12,460 alleles at position c.3877.
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Table 1. Semen Parameters of the 20 Subjects and the 7 Subjects Carrying DNAH1 Homozygous Variants

Semen Parameters
Average of
20 Subjectsa P1 P2 P3 P6 P8 P9 P17

DNAH1 mutations c.11788�1G>A
(p.Gly3930Alafs*120)

c.11788�1G>A
(p.Gly3930Alafs*120)

c.11788�1G>A
(p.Gly3930Alafs*120)

c.3877G>A
(p.Asp1293Asn)

c.12796 T>C
(p.4266Glnext*21)

c.5094þ1G>A
(p.Leu1700Serfs72)

c.11788�1G>A
(p.Gly3930Alafs*120)

Consanguinity yes yes yes no yes yes no

Origin of the
subject

Tunisia Tunisia Tunisia Algeria Algeria Algeria Tunisia

Sperm volume (ml) 3.2 (1–5.5) 5 2.5 2 5 4.5 3.5 2.5

Sperm concentration
106/ml

22 (0–59) 45 0 2.8 57 11 53 31

Motility (AþB) 1 hr 2.5 (0–35) 0 NA 2 35 0 0.5 0

Vitality 44 (6–73) 22 NA NA 73 61 48 NA

Normal spermatozoa 0.35 (0–6) 0 NA 0 6 0 0 0

Absent flagella 30 (8–46) 34 þ 34 þ þ 16 30

Short flagella 44 (16–70) 38 þ 44 þ þ 70 20

Coiled flagella 13 (2–32) 14 NA 14 þ þ 12 32

Angulation 12 (2–19) 4 NA 2 þ þ 8 6

Flagella of irregular
caliber

55 (16–92) 48 NA 50 þ þ 54 16

Multiple anomalies
index

2.9 (1.9–3.9) 3.1 NA 2.4 NA NA 3 2.6

Values are expressed in percents, unless specified otherwise. Abbreviations are as follows: NA, not available; plus sign, anomalies reported (>5%) but not accurately quantified.
aValues are expressed as the mean with the lower and higher values in parentheses.
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Figure 1. Location of DNAH1 Mutations
in the Intron-Exon Structure and in the
Protein Representation of DNAH1
(A) DNAH1 genomic structure.
(B) DNAH1 domainmap showing the loca-
tion of the four identified mutations. The
red boxes indicate the six known AAA-
ATPase domains (AAA 1 to 6) as detected
by homology (Uniprot server). The micro-
tubule-binding domain (MBT) lies be-
tween AAA4 and AAA5. The N-terminal
part of the protein binds to the intermedi-
ate, light-intermediate dynein chains. The
position of the stalk and the microtubule-
binding domain (MTB) are indicated.
We performed Fisher exact tests (with fisher.test in R) to

evaluate whether each observed SNV was statistically over-

represented in our cohort of 18 unrelated individuals,

compared to EVS. All four individual SNVs are significantly

enriched (p values: 5.9 3 10�11 for c.11788�1G>A, 8.1 3

10�6 for c.5094þ1G>A and c.12796T>C, and 2.4 3 10�5

for c.3877G>A). We then investigated whether DNAH1

as a whole was significantly enriched in damaging SNVs

in our cohort. Overall, EVS contains five nonsense and

two splice-site SNVs, all observed heterozygously in a total

of ten individuals. By using the coverage data available on

the EVS website, we find that 20,737 positions covering

the DNAH1 exons and intron boundaries had sufficient

sequence coverage to be genotyped in 6,189 individuals

on average. By contrast, counting only the two splice-site

mutations as damaging, we observe 6 damaging alleles

among 36 in our cohort: this represents a highly signifi-

cant enrichment (Fisher exact test, p value: 3 3 10�12).

Furthermore, we note that there were no homozygous

damaging variants observed in the 6,189 EVS individuals

compared to 3 in our cohort of 18 (Fisher exact test,

p value: 33 10�8). Altogether we believe that these genetic

results convincingly demonstrate that mutations in

DNAH1 are associated with MMAF.

The c.5094þ1G>A variant found in individual P9 affects

DNAH1 intron 31 consensus donor splice site. The

abnormal splicing is predicted to cause the prolongation

of exon 31 until the introduction of a nonsense codon

(p.Leu1700Serfs72). The position of the next donor site

was predicted by ‘‘Splice Site Prediction by Neural

Network.’’ Unfortunately we could not obtain any leuko-

cytes from this subject to validate this prediction and

observe whether this variant also led to nonsense-medi-

ated mRNA decay (NMD). Because of the location of the

variant on a consensus splice site and the unambiguous

predictions of splice prediction software, we did not syn-

thesize a minigene to verify the effect of this variant

in vitro. A missense change, p.Asp1293Asn, was identified

in P6. Interestingly, the Asp1293 amino acid is well

conserved across species (Figure S3). This missense change

is also predicted to be possibly damaging by SIFT and Poly-

Phen-2, two prediction softwares for nonsynonymous

SNPs. It affects the N-ter of the protein (Figure 1B), known

to be important for the structure of dynein arms.21 Variant
98 The American Journal of Human Genetics 94, 95–104, January 2, 2
p.4266Glnext*21 found in individual P8 abolishes the stop

codon in exon 78, leading to the addition of 21 codons

at the 30 end of the coding sequence. The role of the

C-terminal domain is uncertain, but based on the

D. discoideum structures, it may participate in long-range

allosteric communication between microtubule-binding

and ATPase regions.22,23 The addition of 21 extra amino

acids to this region is likely to disrupt these interactions.

The c.11788�1G>A variant identified in four subjects

(P1–P3 and P17) affects the final G nucleotide of DNAH1

intron 73, one of the consensus splice acceptor nucleo-

tides. The resulting abnormal splicing is predicted to recog-

nize a new CG acceptor site located just one nucleotide

further, thus shifting the reading frame and inducing a

premature stop codon (p.Gly3930Alafs*120). As could be

expected, P1–P3 share a common haplotype (Table S4).

P17 also shares a common haplotype of 30 SNPs with

P1–P3, suggesting a founder effect for this mutation. To

assess the functional impact of the DNAH1 splice acceptor

site mutation c.11788�1G>A, we studied mRNA products

isolated from control and P3 lymphocytes (primer se-

quences available in Table S5). RT-PCR of P3’s samples

yielded no product despite repeated attempts, whereas

the three amplification attempts from control lympho-

cytes yielded the expected product (Figure 2A). RT-PCR tar-

geting GAPDH (MIM 138400) and RPLP0 (MIM 180510)

confirmed the integrity of P3’s RNA (Figure 2B). This sug-

gests a specific degradation of the mutant DNAH1 tran-

scripts by NMD. To further validate the pathogenicity of

this variant, we analyzed DNAH1 localization in sperm

from P3 by immunofluorescence and the ultrastucture of

the flagella by electron microscopy. In control individuals,

DNAH1 antisera decorated the full length of the sperm fla-

gellum (Figure 2C), suggesting a putative role in the teth-

ering of the inner dynein arms along the entire axoneme.

In contrast, in sperm from individual P3 carrying the

c.11788�1G>A mutation, DNAH1 immunostaining was

absent, confirming that the splicing defect results in the

degradation of the transcripts by NMD (Figure 2D). We

next tested the integrity of the outer and inner dynein

arms by using antibodies directed against DNALI1 and

DNAI2, two well-established diagnostic markers of the in-

ner and outer dynein arms, respectively. Staining with

DNALI1 was strongly reduced in the sperm of individual
014



Figure 2. Analysis of P3 Carrying the c.11788�1G>A Variant Evidencing DNAH1mRNA Decay by RT-PCR and the Absence of DNAH1
in Sperm by Immunolocalization
(A) RT-PCR analyses of subject P3 (c.11788�1G>A homozygote) and control individuals from the general population (C1–C3). Electro-
phoresis showing the RT-PCR amplification of DNAH1 exons 30–32, 64–66, 73–75. C1, C2, and C3 yield a normal fragment of 228, 293,
and 241 bp, whereas subject P3 shows no amplification. There is no amplification from the RT-negative blank control (column B).
(B) Electrophoresis showing the amplification of the same cDNAs with GAPDH and RPL0 primers. Bands of equivalent intensity are
obtained from all samples including P3. Reverse transcription was carried out with 500 ng of extracted RNA and oligo dT priming.
Two microliters of the obtained cDNA mix was used for the subsequent PCR. PCR amplification was carried out with three couples of
primers located in exons 30–32, 64–66, and 73–75 of DNAH1 at an elongation temperature of 57�C (40 cycles), in parallel to amplifica-
tion of the same samples with the control housekeeping GAPDH and RPL0, respectively, at an elongation temperature of 60�C (35
cycles). RT-PCR primers are listed in Table S4.
(C and D) Immunofluorescence staining of human spermatozoa with DNAH1 antibodies (green) and DNAI2 (red). DNAH1 is observed
throughout the flagellum in control sperm, whereas it is absent from P3’s sperm. In both control and P3 sperm, ODA is present as wit-
nessed by the immunostaining of DNAI2.
(E and F) Immunofluorescence staining of human spermatozoa with DNALI1 antibodies (green) and DNAI2 (red). DNALI1, a marker of
IDA, is localized throughout flagella in control sperm, whereas it is strongly reduced in sperm from P3. No difference is noticed in the
coimmunostaining of DNAI2. Sperm were counterstained with Hoechst 33342 (blue) as nuclei marker. White scale bars represent 5 mm.
Sperm cells were washed in phosphate-buffered saline (PBS), fixed in 4% PFA for 2 min at room temperature (RT), and washed twice in
PBS. Fixed spermatozoa were allowed to air-dry on poly-L-lysine coated slides followed by permeabilization with 0.5% Triton X-100.
Samples were then blocked with (PBS)/1% bovine serum albumin (BSA)/2% normal goat serum (NGS) for 30 min at RT. Slides were incu-
bated with the primary antibodies 2 hr followed by an incubation with the secondary antibodies for 45min at RTandmounting in Dako
mounting medium (Dako). Appropriate controls were performed, omitting the primary antibodies. Polyclonal mouse DNALI1 and
monoclonal mouse DNAI2 were purchased from Abcam (UK) and Abnova Corporation (Taiwan), respectively. Polyclonal DNAH1 anti-
bodies were purchased from Prestige Antibodies (Sigma-Aldrich). Monoclonal mouse anti-acetylated-a-tubulin were purchased from
Sigma-Aldrich. Highly cross-adsorbed secondary antibodies (Alexa Fluor 488 and Alexa Fluor 546) were obtained fromMolecular Probes
(Invitrogen).
P3, suggesting that inner arms were mostly absent in this

individual (Figure 2F). On the other hand, the antibodies

directed against DNAI2 stained the sperm flagella in both

control and individual P3, suggesting that the outer

dynein arms were not affected by the absence of DNAH1

(Figures 2E and 2F). In order to confirm that the inner

arms were disorganized, we studied the ultrastructure of

individual P3’s sperm by transmission electronmicroscopy

(TEM) (Figure 3). We could observe 40 doublets of microtu-

bules in cross sections presenting a sufficient quality to

observe the dynein arms. Fifteen outer dynein arms

(ODA) and only 4 inner dynein arms (IDA) were observed,
The Am
confirming the complete disorganization of the IDA.More-

over, approximately one third of the microtubule doublets

were malformed or absent in the observed sections.

Furthermore, the central singlet of microtubules was

missing (9þ0) in 47% of these sections. The fibrous sheath

was also strongly disorganized in 90% of the sections

(Figure 3).

After complete DNA sequencing of DNAH1, we identi-

fied two variants altering a consensus splice site, highly

likely to have a damaging effect, in 3 out of 18 unrelated

individuals. The predicted effect of the other two identified

variants is not as clear but the addition of 21 residues
erican Journal of Human Genetics 94, 95–104, January 2, 2014 99



Figure 3. ElectronMicroscopy Analysis of Spermatozoa from P3, Carrying the c.11788�1G>A Variant, Reveals Numerous Ultrastruc-
tural Defects
(A) EM cross-section of a flagellum from a control individual sperm sample.
(B) Cross-section from the individual P3 sample showing numerous defects: lack of IDA (red arrow) and axonemal disorganization with
mislocalized peripheral doublets (green arrows) associated with a displacement of the central pair (blue asterisk).
(C) Cross-section from individual P3 sperm flagellum showing a complete absence of the central pair.
(D) Cross-section from individual P3 sperm flagellum showing supernumerary dense fibers with absence of mitochondrion on the right
side of the mid-piece.
(E and F) Drawings describing the normal sperm axoneme ultrastructure with their different components (E) and different defects
observed in DNAH1 mutated subjects (F).
Sperm cells were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) during 2 hr at room temperature. Details of trans-
mission electron microscopy technique were detailed previously.3
caused by the stop-loss variant is probably pathogenic.

Interestingly, P1, P2, P3, P8, P9, and P17—who have

inherited the variants predicted to have most severe

effects—present 0% morphologically normal spermatozoa

with a motility <2%, in contrast to P6, carrying the

p.Asp1293Asn variant, who presents a milder phenotype

with 35% motility and 6% morphologically normal sper-

matozoa (Table 1). These data therefore suggest that the

c.3877G>A variant might be a hypomorphic allele, which

is consistent with a single amino acid substitution in a

large protein. Unfortunately we could not obtain any addi-

tional biological material from the other mutated subjects

and in particular from P6 and could not assess the effects of

the other variants on protein expression/localization and

on the ultrastructure of the flagella. In addition, no muta-

tions were identified in DNAH1 in 13 subjects, suggesting

that MMAF is genetically heterogeneous. We are currently

sequencing the exomes of these 13 subjects in order to

identify other genes involved in MMAF. We note that

with the exception of P6, who carried a missense mutation

and presented a milder form of the pathology, we included

here only individuals with the most severe phenotypes.
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We can therefore expect that individuals with intermediate

asthenozoospermia and low levels of morphological

anomalies could also harbor homozygous or compound

heterozygous DNAH1 mutations of moderate severity.

The data we present here are consistent with the pheno-

type described for Dnahc1 knockout (KO) mice (the ortho-

log of DNAH1), which display asthenozoospermia and

male infertility.19 In this model, however, no structural

defects of the axoneme were observed either by optical or

by transmission electronic microscopy.19 This contrasts

with the strong axonemal disorganization we observed in

sperm from P3 carrying the homozygous c.11788�1G>A

mutation, where the inner dynein arms and the central

pair of microtubules were mostly absent. In the Dnahc1

KO, however, the authors describe that the targeted

deletion did not lead to a complete disruption of the

gene and resulted in a truncated protein with a preserved

N terminus.19 Because the N-terminal part of the DyHCs

plays a crucial role in the assembly and stabilization of

the inner dynein arms, as shown in Chlamydomonas

mutants,24 it is likely that the formation of the base of

the inner dynein arm is preserved and that the described
2014



Figure 4. Relative mRNA Expression of DNAH1, DNAH3, DNAH7,
and DNAH12 in Testis and in Tracheal Cells
Expression of DNAH1 mRNA (in green) in testis is significantly
higher (8-fold) than in tracheal cells (in blue). Tracheal cell expres-
sion is set to 1. Expression ofDNAH3 andDNAH7mRNA are signif-
icantly lower in testis than in tracheal cells, whereas DNAH12
expression is not significantly different. Data are presented as
mean 5 standard deviation of three independent quantitative
real-time PCR experiments. Statistical tests (paired t test) with a
two-tailed p value % 0.05 were considered as significant (*). Hu-
man testis and trachea cDNA were obtained from Amsbio (Abing-
don). mRNA expressionwere assessed by qPCRwith a Biorad CFX9
(Biorad). PCR primers used to amplify DNAH1 and three other
inner dynein arm heavy chain genes (DNAH3, DNAH7, and
DNAH12) and the reference gene ACTB are listed in Table S5.
The PCR cycle was as follows: 10 min 95�C, 1 cycle; 10 s 95�C,
30 s 58�C þ fluorescence acquisition, 55 cycles. Analysis was per-
formed with Biorad software CFX Manager v.3.0, with advanced
relative quantification mode. Values for each gene were normal-
ized to expression level of beta-actin gene (ACTB) via the 2-
DDCT method.25 The 2-DDCT value was set at 0 in tracheal cells,
resulting in an arbitrary expression of 1.
KO animals could ensure correct axonemal biogenesis and

organization. Alternatively, it is possible that the DNAH1

role in axonemal structure is not as central in mouse as it

is in human.

Apart from infertility, none of the 20 individuals

declared suffering from any of the principal PCD symp-

toms such as an impairment of the respiratory functions.

This suggests that DNAH1 function in cilia is probably

compensated by other HC dyneins. Previous phylogenetic

studies indicate that DNAH3 (MIM 603334), DNAH7 (MIM

610061), and DNAH12 (MIM 603340) are close paralogs to

DNAH1, DNAH12 being the closest.18 We therefore

measured the relative expression of these four IDA heavy

chains to assess whether the expression of these proteins

could compensate the absence of DNAH1 in other ciliated

tissues. By using qPCR (primer sequences available in Table

S6), we showed that DNAH1 is expressed at a much higher

level (8-fold) in the testis compared to the trachea

(Figure 4). Conversely, the other IDA heavy chains are ex-

pressed at higher levels (DNAH3, DNAH7) or at a similar

level (DNAH12) in control tracheal cells as in testis

(Figure 4). Data available from public expression databases

show a similar expression pattern to what was observed

here. Moreover, these data show that whereas DNAH3

and DNAH7 expression is restricted to ciliated cells,
The Ame
DNAH1 andDNAH12 expression is rather atypical, because

it is almost ubiquitous (EST profile viewer and GeneHub-

GEPIS). We therefore note that not only are DNAH1 and

DNAH12 closest to one another from a phylogenetic point

of view, but they also share a broad expression pattern. We

therefore believe that DNAH12 is the most likely candidate

for a potential functional compensation of DNAH1 in cili-

ated cells. In addition and/or alternatively to this compen-

sation, we cannot exclude the possibility that some of the

affected individuals might retain expression of DNAH1 in

the ciliated cells of the trachea, although this is not ex-

pected for the most severe variants identified. Alterna-

tively, we cannot exclude a reduction of ciliary beats,

which could lead to a small decrease of cilia function in

respiratory epithelium or in other ciliated tissues without

pathological consequences, or at least none that have

been noticed by the affected men themselves. We could

not obtain nasal brushings or curette biopsies from

affected individuals and therefore cannot formally exclude

this possibility. Future work on DNAH1 mutated subjects

should include a thorough analysis of PCD symptoms

including nasal nitric oxide measurements, video micro-

scopy, and transcription electron microscopy. This would

provide valuable information regarding the role of

DNAH1 in ciliated cells as well as indicate whether

mutated men might be at risk of developing PCD symp-

toms, perhaps as late onset.

Inner dynein arms are organized in seven molecular

complexes, viewed in electronic microscopy as globular

heads arranged in 3-2-2 groups and corresponding to three

different types of inner arms (IDA1 to IDA3, see Figure 5).

In Dnahc1 KO mice, electron microscopy studies indicated

that one head of the IDA3 was missing, leading to a 3-2-1

globular head arrangement, suggesting that DNAH1 is a

component of IDA3. Radial spokes are present on microtu-

bule doublets and interact with the inner arms. They allow

a connection between external doublets of the microtu-

bules and the two central microtubules. They are multipro-

tein complexes of more than 20 proteins. In mammals,

there are three different radial spokes (RS1, RS2, and RS3)

binding tightly to the inner arm bases of different IDAs.

Among the different proteins involved in axonemal forma-

tion and organization, only mutations in CCDC39 (MIM

613798) and CCDC40 (MIM 613799) lead to a disorganiza-

tion of the axonemal structure, a phenotype similar to

what we observe in subjects with DNAH1 mutations.

CDCC39 and CDCC40 control the assembly of the dynein

regulatory complex (DRC), a major regulatory node inter-

acting with numerous axonemal structures.27–29 In the

absence of DRC, RS2 anchoring is weakened, leading to

the displacement or the absence of the central pair and

the mislocalization of the peripheral doublets. Interest-

ingly, in T. thermophila, the RS3 stalk is directly connected

to the dynein d/a tail through an arc-like structure

(Figure 5).26 It can therefore be speculated that the absence

of DNAH1 removes the anchoring site of the radial spoke

3. As a consequence, the attachment of the two central
rican Journal of Human Genetics 94, 95–104, January 2, 2014 101



Figure 5. Proposed Schematic Model for the Location and the
Function of the Inner Arm Heavy Chain DNAH1 in the Axoneme
of Human Sperm Flagellum
(A) Simplified representation showing a cross-sectional view of
one microtubule doublet of an axoneme surrounding the central
pair complex; the viewing is from the flagellar base. Light gray,
central pair complex; light blue, outer doublets; dark blue, outer
arm dyneins (OAD); dark pink, inner arm dynein heavy chain
DNAH1; dark gray, radial spoke 3.
(B) Longitudinal view illustrating the approximate localization on
the outer doublet A-tubule of the various dyneins and regulatory
structures within a single 96 nm axonemal repeat. RS3 stalk is
directly connected to the DNAH1 tail through an arc-like struc-
ture. DNAH1 may therefore stabilize the RS3.26 Light pink, inner
arm dyneins (IAD); yellow, IC/LC, intermediate chain/light chain;
orange, nexin-dynein regulatory complex (N-DRC); green, modi-
fier of inner arms (MIA) complex; blue, calmodulin- and spoke-
associated complex (CSC); purple, distal protrusion (DP).
singlet microtubules should be weakened. This scheme is

in agreement with our data that show 47% of 9þ0 axo-

nemes (Figure 3).

As illustrated in Table S1, not all PCDs are associated

with an infertility phenotype. For instance, subjects with

mutations in CCDC114 (MIM 615038)30,31 and DNAH11

(MIM 603339)4 are fully fertile and could procreate sponta-

neously whereas subjects with DNAAF2 (MIM 612517),

DNAH5 (MIM 603335), DNAI1 (MIM 604366), or HYDIN

(MIM 610812)4,32–34 present complete sperm immobility.

Also, mutations in genes involved in the preassembly of

the dynein arms DNAAF1 (MIM 611390), DNAAF2 (MIM

612517), DNAAF3 (MIM 614566),32,35–37 and LRRC6

(MIM 614930),38 described to induce IDA loss, did not pre-

sent axonemal microtubule disorganization. Consistently,

IDAs are not or are only partially affected in deficient

Chlamydomonas mutants for ODA7 (DNAAF1), ktu/pf13

(DNAAF2), and pf22 (DNAAF3): in ODA7 mutants, inner

arms are not affected, in ktu/pf13mutants only IDA dynein

c is missing, and in pf22 mutants IDA dynein b and c are

absent.27,29,36,37,39 Most importantly, IDA dynein f and
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p28 remain located in the flagella. It can thus be speculated

that there are several pathways for the preassembly and/or

the targeting of the different mammalian IDAs, thus

explaining the absence of axonemal microtubule disorga-

nization in subjects presenting with mutations in

DNAAF1, DNAAF2, DNAAF3, and LRRC6. Here we

observed that DNALI1 immunostaining was strongly

reduced along the whole flagellum (Figure 2E), suggesting

that DNALI1 may be located mainly in IDA3.40 In agree-

ment with this result, p28, the Chlamydomonas ortholog

ofDNAIL1, is associated with the inner dynein arm located

in IDA3. Interestingly, DNALI1 has an expression pattern

similar to DNAH1: it presents a predominant testis expres-

sion and also a remarkable expression in nonciliated

cells.41 Altogether, these facts suggest a close molecular

partnership between DNAH1 and DNALI1.

Mutations affecting axonemal components and/or

axoneme assembly often result in PCD, which frequently

includes a male infertility phenotype. In this study we

describe that mutations in DNAH1, which codes for an

axonemal component, leads to male infertility only with

no other apparent PCD-associated syndromes. Our data

indicate that DNAH1 is required in spermatozoa for the

formation of the inner dynein arms and that its absence

is deleterious for the organization and biogenesis of the

axoneme. Overall our data confirm that despite close struc-

tural similarities, sperm flagella and cilia present important

divergences in axonemal organization and biogenesis.
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