G. M. Taylor, E. Murphy, R. Hopkins, P. Rutland, and Y. Chistov, First report of Mycobacterium bovis DNA in human remains from the Iron Age, Microbiology, vol.153, issue.4, pp.1243-1249, 2007.
DOI : 10.1099/mic.0.2006/002154-0

G. Dutau, The history of tuberculosis, pp.88-95, 2005.

C. Raviglione, D. E. Snider, and A. Kochi, Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic, JAMA: The Journal of the American Medical Association, vol.273, issue.3, pp.220-226, 1995.
DOI : 10.1001/jama.273.3.220

R. Van-crevel, T. H. Ottenhoff, and J. W. Van-der-meer, Innate Immunity to Mycobacterium tuberculosis, Clinical Microbiology Reviews, vol.15, issue.2, pp.294-309, 2002.
DOI : 10.1128/CMR.15.2.294-309.2002

A. Raja, Immunology of tuberculosis, 2004.

M. Saunders and W. J. Britton, Life and death in the granuloma: immunopathology of tuberculosis, Immunology and Cell Biology, vol.173, issue.2, pp.103-111, 2007.
DOI : 10.1038/sj.icb.7100027

. Orme, Mycobacterium tuberculosisaerogenicrechallenge infections in B cell-deficient mice, Tuber. Lung. Dis, vol.78, pp.257-261, 1997.

M. Bosio, D. Gardner, and K. L. Elkins, Infection of B Cell-Deficient Mice with CDC 1551, a Clinical Isolate of Mycobacterium tuberculosis: Delay in Dissemination and Development of Lung Pathology, The Journal of Immunology, vol.164, issue.12, pp.6417-6425, 2000.
DOI : 10.4049/jimmunol.164.12.6417

H. D. Engers, V. Houba, and J. Bennedsen, Results of a World Health Organization sponsored Workshop to characterize antigens recognized by mycobacterium specific monoclonal antibodies, Infect. Immun, vol.51, pp.718-720, 1986.

P. Hickman, J. Chan, and P. Salgame, Mycobacterium tuberculosis Induces Differential Cytokine Production from Dendritic Cells and Macrophages with Divergent Effects on Naive T Cell Polarization, The Journal of Immunology, vol.168, issue.9, pp.4636-4642, 2002.
DOI : 10.4049/jimmunol.168.9.4636

M. Thurnher, R. Ramoner, and G. Gastl, Bacillus Calmette-Gu??rin mycobacteria stimulate human blood dendritic cells, International Journal of Cancer, vol.183, issue.1, pp.128-134, 1997.
DOI : 10.1002/(SICI)1097-0215(19970106)70:1<128::AID-IJC19>3.0.CO;2-H

S. Roy, S. Sharma, M. Sharma, R. Aggarwal, and M. Bose, Induction of nitric oxide release from the human alveolar epithelial cell line A549: an in vitro correlate of innate immune response to Mycobacterium tuberculosis, Immunology, vol.56, issue.3, pp.471-480, 2004.
DOI : 10.1006/abio.1987.9999

M. I. Wickremasinghe, L. H. Thomas, and J. S. Friedland, Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network, J. Immunology, vol.163, pp.3936-3947, 1999.

S. Muñoz, R. Hernandez-pando, S. N. Abraham, and J. A. Enciso, Mast Cell Activation by Mycobacterium tuberculosis: Mediator Release and Role of CD48, The Journal of Immunology, vol.170, issue.11, pp.5590-5596, 2003.
DOI : 10.4049/jimmunol.170.11.5590

K. Law, M. Weiden, T. Harkin, K. Tchou-wong, C. Chi et al., Increased release of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha by bronchoalveolar cells lavaged from involved sites in pulmonary tuberculosis., American Journal of Respiratory and Critical Care Medicine, vol.153, issue.2, pp.799-804, 1996.
DOI : 10.1164/ajrccm.153.2.8564135

C. S. Hirsch, J. J. Ellner, D. G. Russell, and E. A. Rich, Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages, J. Immunol, vol.152, pp.743-753, 1994.

A. Aderem and D. M. Underhill, MECHANISMS OF PHAGOCYTOSIS IN MACROPHAGES, Annual Review of Immunology, vol.17, issue.1, pp.593-623, 1999.
DOI : 10.1146/annurev.immunol.17.1.593

Y. Zaffran and J. J. Ellner, A coat of many complements, Nature Medicine, vol.98, issue.10, pp.1078-1079, 1997.
DOI : 10.1073/pnas.93.8.3193

L. S. Schlesinger, Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors, J. Immunol, vol.150, pp.2920-2930, 1993.

S. Zimmerli, S. Edwards, and J. D. Ernst, Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages., American Journal of Respiratory Cell and Molecular Biology, vol.15, issue.6, pp.760-770, 1996.
DOI : 10.1165/ajrcmb.15.6.8969271

R. Pasula, J. R. Wright, D. L. Kachel, and W. J. Martin, Surfactant protein A suppresses reactive nitrogen intermediates by alveolar macrophages in response to Mycobacterium tuberculosis, Journal of Clinical Investigation, vol.103, issue.4, pp.483-490, 1999.
DOI : 10.1172/JCI2991

R. P. Da-silva, B. F. Hall, K. A. Joiner, and D. L. Sacks, CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclicpromastigotes to human macrophages, J. Immunol, vol.143, pp.617-622, 1989.

E. N. Astarie-dequeker, C. N-'diaye, V. M. Le, J. Rittig, I. Prandi et al., The mannose receptor mediates uptake ofpathogenic and nonpathogenic mycobacteria and bypasses bactericidal responsesin human macrophages, Infect. Immun, vol.67, pp.469-477, 1999.

J. Nigou, C. Zelle-rieser, M. Gilleron, M. Thurnher, and G. Puzo, Mannosylated Lipoarabinomannans Inhibit IL-12 Production by Human Dendritic Cells: Evidence for a Negative Signal Delivered Through the Mannose Receptor, The Journal of Immunology, vol.166, issue.12, pp.7477-7485, 2001.
DOI : 10.4049/jimmunol.166.12.7477

URL : https://hal.archives-ouvertes.fr/hal-00177977

D. L. Clemens and M. A. Horwitz, Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited, Journal of Experimental Medicine, vol.181, issue.1, pp.257-270, 1995.
DOI : 10.1084/jem.181.1.257

S. Sturgill-koszycki, P. H. Schlesinger, and P. Chakraborty, Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase, Science, vol.263, issue.5147, pp.678-681, 1994.
DOI : 10.1126/science.8303277

I. Vergne, J. Chua, S. B. Singh, and V. Deretic, PHAGOSOME, Annual Review of Cell and Developmental Biology, vol.20, issue.1, pp.367-394, 2004.
DOI : 10.1146/annurev.cellbio.20.010403.114015

G. Ferrari, H. Langen, M. Naito, and J. Pieters, A Coat Protein on Phagosomes Involved in the Intracellular Survival of Mycobacteria, Cell, vol.97, issue.4, pp.435-447, 1999.
DOI : 10.1016/S0092-8674(00)80754-0

V. Deretic and R. A. Fratti, Mycobacterium tuberculosis phagosome, Molecular Microbiology, vol.153, issue.6, pp.1603-1609, 1999.
DOI : 10.1074/jbc.272.10.6097

L. Clemens and M. A. Horwitz, The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin, Journal of Experimental Medicine, vol.184, issue.4, pp.1349-1355, 1996.
DOI : 10.1084/jem.184.4.1349

S. Sturgill-koszycki, U. E. Schaible, and D. G. Russell, Mycobacterium countainingphagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis, EMBO. J, vol.15, pp.6960-6968, 1996.

J. D. Macmicking, R. J. North, R. Lacourse, J. S. Mudgett, S. K. Shah et al., Identification of nitric oxide synthase as a protective locus against tuberculosis, Proc. Natl. Acd. Sci. USA, pp.5243-5248, 1997.
DOI : 10.1073/pnas.94.10.5243

S. Thoma-uszynski, S. Stenger, and O. Takeuchi, Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors, Science, vol.291, issue.5508, pp.1544-1547, 2001.
DOI : 10.1126/science.291.5508.1544

C. Bogdan, M. Rollinghoff, and A. Diefenbach, Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity, Current Opinion in Immunology, vol.12, issue.1, pp.64-76, 2000.
DOI : 10.1016/S0952-7915(99)00052-7

L. B. Adams, M. C. Dinauer, D. E. Morgenstern, and J. L. , Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice, Tubercle and Lung Disease, vol.78, issue.5-6, pp.237-246, 1997.
DOI : 10.1016/S0962-8479(97)90004-6

J. Chan, X. D. Fan, S. W. Hunter, P. J. Brennan, and B. R. Bloom, Lipoarabinomannan , a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages, Infect. Immun, vol.59, pp.1755-1761, 1991.

T. K. Means, E. Lien, A. Yoshimura, S. Wang, D. T. Golenbock et al., The CD14 ligands lipoarabinomannan and lipopolysaccharidediffer in their requirement for Toll-like receptors, J. Immunol, vol.163, pp.6748-6755, 1999.

M. Hajjar, D. S. O-'mahony, A. Ozinsky, D. M. Underhill, A. Aderem et al., Cutting edge: functional interactionsbetween toll-like receptor, 2001.

H. Hemmi, O. Takeuchi, and T. Kawai, AToll-like receptor recognizes bacterial DNA, Nature, vol.408, pp.740-745, 2000.

H. Noss, R. K. Pai, T. J. Sellati, J. D. Radolf, J. Belisle et al., Toll-Like Receptor 2-Dependent Inhibition of Macrophage Class II MHC Expression and Antigen Processing by 19-kDa Lipoprotein of Mycobacterium tuberculosis, The Journal of Immunology, vol.167, issue.2, pp.910-918, 2001.
DOI : 10.4049/jimmunol.167.2.910

H. D. Brightbill, D. H. Libraty, and S. R. Krutzik, Host Defense Mechanisms Triggered by Microbial Lipoproteins Through Toll-Like Receptors, Science, vol.285, issue.5428, pp.732-736, 1999.
DOI : 10.1126/science.285.5428.732

G. Senaldi, S. Yin, C. L. Shaklee, P. F. Piguet, T. W. Mak et al., Corynebacteriumparvum -and Mycobacterium bovis bacillus Calmette-Guerin-induced granuloma formation is inhibited in TNF receptor I (TNF-RI) knockout mice and by treatment with soluble TNF-RI, J. Immunol, vol.157, pp.5022-5026, 1996.

I. M. Orme and A. M. Cooper, Cytokine/chemokine cascades in immunity to tuberculosis, Immunology Today, vol.20, issue.7, pp.307-312, 1999.
DOI : 10.1016/S0167-5699(98)01438-8

M. G. Bonecini-almeida, S. Chitale, I. Boutsikakis, J. Geng, H. Doo et al., Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity: requirement for IFN-gamma and primed lymphocytes, J. Immunol, vol.160, pp.4490-4499, 1998.

A. L. Moreira, L. Tsenova-berkova, J. Wang, P. Laochumroonvorapong, S. Freeman et al., Effect of cytokine modulation by thalidomide on the granulomatous response in murine tuberculosis, Tubercle and Lung Disease, vol.78, issue.1, pp.47-55, 1997.
DOI : 10.1016/S0962-8479(97)90015-0

P. Juffermans, S. Florquin, L. Camoglio, A. Verbon, A. H. Kolk et al., Interleukin???1 Signaling Is Essential for Host Defense during Murine Pulmonary Tuberculosis, The Journal of Infectious Diseases, vol.182, issue.3, pp.902-908, 2000.
DOI : 10.1086/315771

C. H. Ladel, C. Blum, A. Dreher, K. Reifenberg, M. Kopf et al., Lethaltuberculosis in interleukin-6-defi- cient mutantmice, Infect. Immun, vol.65, pp.4843-4849, 1997.

R. Schindler, J. Mancilla, S. Endres, R. Ghorbani, S. C. Clark et al., Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood. mononuclear cells: IL-6 suppresses IL-1 and TNF, Blood, vol.75, pp.40-47, 1990.

K. Vanheyningen, H. L. Collins, and D. G. Russell, IL-6 produced by macrophages infected with Mycobacterium species suppresses T cell responses, J. Immunol, vol.158, pp.330-337, 1997.

M. Cooper, D. K. Dalton, T. A. Stewart, J. P. Griffin, D. G. Russell et al., Disseminated tuberculosis in interferon gamma gene-disrupted mice, Journal of Experimental Medicine, vol.178, issue.6, pp.2243-2247, 1993.
DOI : 10.1084/jem.178.6.2243

M. Ting, A. C. Kim, A. Cattamanchi, and J. D. Ernst, Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1, J Immunol, vol.163, pp.3898-3906, 1999.

J. Gong, M. Zhang, R. L. Modlin, P. S. Linsley, D. V. Iyer et al., Interleukin-10 downregulatesMycobacterium tuberculosisinduced Th1 responses and CTL A-4 expression, Infect. Immun, vol.64, pp.913-918, 1996.

E. Dahl, H. Shiratsuchi, B. D. Hamilton, J. J. Ellner, and Z. Toossi, Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis, Infect. Immun, vol.64, pp.399-405, 1996.

K. Kaczmarek-hájek, E. Lörinczi, R. Hausmannet, and A. Nicke, Molecular and functional properties of P2X receptors???recent progress and persisting challenges, Purinergic Signalling, vol.149, issue.1, pp.375-417, 2012.
DOI : 10.1007/s11302-012-9314-7

D. Virgilio, P. Chiozzi, S. Falzoni, D. Ferrari, J. M. Sanz et al., Cytolytic P2X purinoceptors, Cell Death and Differentiation, vol.5, issue.3, pp.191-199, 1998.
DOI : 10.1038/sj.cdd.4400341

R. A. Le-feuvre, D. Brough, Y. Iwakura, K. Takeda, and N. J. Rothwell, Priming of Macrophages with Lipopolysaccharide Potentiates P2X7-mediated Cell Death via a Caspase-1-dependent Mechanism, Independently of Cytokine Production, Journal of Biological Chemistry, vol.277, issue.5, pp.3210-3218, 2002.
DOI : 10.1074/jbc.M104388200

D. Humphreys, J. Rice, S. B. Kertesy, and G. R. Dubyak, Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor, J. Biol. Chem, vol.275, pp.26792-26798, 2000.

R. Placido, G. Auricchio, S. Falzoni, L. Battistini, V. Colizzi et al., P2X7 purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with Mycobacterium tuberculosis reducing the intracellular bacterial viability, Cellular Immunology, vol.244, issue.1, pp.10-18, 2006.
DOI : 10.1016/j.cellimm.2007.02.001

A. Molloy, P. Laochumroonvorapong, and G. Kaplan, Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guerin, Journal of Experimental Medicine, vol.180, issue.4, pp.1499-509, 1994.
DOI : 10.1084/jem.180.4.1499

J. Keane, H. G. Remold, and H. Kornfeld, Virulent Mycobacterium tuberculosis Strains Evade Apoptosis of Infected Alveolar Macrophages, The Journal of Immunology, vol.164, issue.4, pp.2016-2020, 2000.
DOI : 10.4049/jimmunol.164.4.2016

K. Velmurugan, B. Chen, and J. L. Miller, Mycobacterium tuberculosis nuoGis a virulence gene that inhibits apoptosis of infected host cells, 2007.

I. P. Fairbairn, Macrophage apoptosis in host immunity to mycobacterial infections, Biochemical Society Transactions, vol.32, issue.3, 2004.
DOI : 10.1042/bst0320496

C. Fratazzi, R. D. Arbeit, C. Carini, and H. G. Remold, Programmed cell death of Mycobacterium aviumserovar 4-infected human macrophages prevents the mycobacteria from spreading and induces mycobacterial growth inhibition by freshly added, uninfected macrophages, J. Immunol, vol.158, pp.4320-4327, 1997.

U. E. Schaible, F. Winau, and P. A. Sieling, Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis, Nature Medicine, vol.9, issue.8, pp.1039-1046, 2003.
DOI : 10.1038/nm906

M. L. Huynh, V. A. Fadok, and P. M. Henson, Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-??1 secretion and the resolution of inflammation, Journal of Clinical Investigation, vol.109, issue.1, pp.41-50, 2002.
DOI : 10.1172/JCI0211638

E. Y. Chung, S. J. Kim, and X. J. Ma, Regulation of cytokine production during phagocytosis of apoptotic cells, Cell Research, vol.165, issue.2, pp.154-161, 2006.
DOI : 10.1146/annurev.immunol.19.1.683

M. Rojas, L. F. Barrera, G. Puzo, and L. F. Garcia, Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages, J. Immunol, vol.159, pp.1352-1361, 1997.

A. Koul, T. Herget, B. Klebl, and A. Ullrich, Interplay between mycobacteria and host signalling pathways, Nature Reviews Microbiology, vol.2, issue.3, pp.189-202, 2004.
DOI : 10.1038/nm906

M. Lopez, L. M. Sly, Y. Luu, D. Young, H. Cooper et al., The 19-kDa Mycobacterium tuberculosis Protein Induces Macrophage Apoptosis Through Toll-Like Receptor-2, The Journal of Immunology, vol.170, issue.5, pp.2409-2416, 2003.
DOI : 10.4049/jimmunol.170.5.2409

C. Derrick and S. L. Morris, The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression, Cellular Microbiology, vol.169, issue.6, pp.1547-1555, 2007.
DOI : 10.1136/pmj.76.895.259

K. Klingler, K. M. Tchou-wong, O. Brändli, C. Aston, R. Kim et al., Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes, Infect. Immun, vol.65, pp.5272-5278, 1997.

M. Rojas, L. F. Garcia, J. Nigou, G. Puzo, and M. Olivier, ???Dependent Cell Signaling, The Journal of Infectious Diseases, vol.182, issue.1, pp.240-251, 2000.
DOI : 10.1086/315676

L. M. Sly, S. M. Hingley-wilson, N. E. Reiner, and W. R. Mcmaster, Survival of Mycobacterium tuberculosis in Host Macrophages Involves Resistance to Apoptosis Dependent upon Induction of Antiapoptotic Bcl-2 Family Member Mcl-1, The Journal of Immunology, vol.170, issue.1, pp.430-437, 2003.
DOI : 10.4049/jimmunol.170.1.430

R. Dhiman, M. Raje, and S. Majumdar, Differential expression of NF-??B in mycobacteria infected THP-1 affects apoptosis, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1770, issue.4, pp.649-658, 2007.
DOI : 10.1016/j.bbagen.2006.11.016

J. Zhang, R. Jiang, H. Takayama, and Y. Tanaka, Involves Preventing Apoptosis Induced by Bcl-2 Upregulation and Release Resulting from Necrosis in J774 Macrophages, Microbiology and Immunology, vol.66, issue.9, pp.845-852, 2005.
DOI : 10.1111/j.1348-0421.2005.tb03673.x

D. Maiti, A. Bhattacharyya, and J. Basu, Lipoarabinomannan from Mycobacterium tuberculosis Promotes Macrophage Survival by Phosphorylating Bad through a Phosphatidylinositol 3-Kinase/Akt Pathway, Journal of Biological Chemistry, vol.276, issue.1, pp.329-333, 2001.
DOI : 10.1074/jbc.M002650200

M. Balcewicz-sablinska, J. Keane, H. Kornfeld, and H. G. Remold, Pathogenic Mycobacterium tuberculosis Evades Apoptosis of Host Macrophages by Release of TNF-R2, Resulting in Inactivation of TNF-?1, J. Immunol, vol.161, pp.2636-2641, 1998.

A. A. Begg and D. Baltimore, An Essential Role for NF-kappa B in Preventing TNF-alpha -Induced Cell Death, Science, vol.274, issue.5288, pp.782-784, 1996.
DOI : 10.1126/science.274.5288.782

T. B. Geijtenbeek and Y. Van-kooyk, Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity, APMIS, vol.132, issue.7-8, pp.698-714, 2003.
DOI : 10.1182/blood-2002-04-1044

D. Jayakumar, W. R. Jr, S. Jacobs, and . Narayanan, Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection, Cellular Microbiology, vol.54, issue.0, pp.365-374, 2008.
DOI : 10.1074/jbc.M306945200

J. Hinchey, S. Lee, and B. Y. Jeon, Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis, Journal of Clinical Investigation, vol.117, issue.8, pp.2279-2288, 2007.
DOI : 10.1172/JCI31947DS1

T. G. Cross, D. Scheel-toellner, N. V. Henriquez, E. Deacon, M. Salmon et al., Serine/Threonine Protein Kinases and Apoptosis, Experimental Cell Research, vol.256, issue.1, pp.34-41, 2000.
DOI : 10.1006/excr.2000.4836

S. K. Roach and J. S. Schorey, Differential Regulation of the Mitogen-Activated Protein Kinases by Pathogenic and Nonpathogenic Mycobacteria, Infection and Immunity, vol.70, issue.6, pp.3040-3052, 2002.
DOI : 10.1128/IAI.70.6.3040-3052.2002

N. Reiling, A. Blumenthal, H. D. Flad, M. Ernst, and S. Ehlers, Mycobacteria-Induced TNF-?? and IL-10 Formation by Human Macrophages Is Differentially Regulated at the Level of Mitogen-Activated Protein Kinase Activity, The Journal of Immunology, vol.167, issue.6, pp.3339-3345, 2001.
DOI : 10.4049/jimmunol.167.6.3339

P. Méndez-samperio, A. Trejo, and A. Pérez, Mycobacterium bovis Bacillus Calmette???Gu??rin (BCG) stimulates IL-10 production via the PI3K/Akt and p38 MAPK pathways in human lung epithelial cells, Cellular Immunology, vol.251, issue.1, pp.37-42, 2008.
DOI : 10.1016/j.cellimm.2008.03.002

A. Blumenthal, S. Ehlers, M. Ernst, H. D. Flad, and N. Reiling, Control of Mycobacterial Replication in Human Macrophages: Roles of Extracellular Signal-Regulated Kinases 1 and 2 and p38 Mitogen-Activated Protein Kinase Pathways, Infection and Immunity, vol.70, issue.9, pp.4961-4967, 2002.
DOI : 10.1128/IAI.70.9.4961-4967.2002

B. Van-den-blink, N. P. Juffermans, and T. Ten-hove, p38 Mitogen-Activated Protein Kinase Inhibition Increases Cytokine Release by Macrophages In Vitro and During Infection In Vivo, The Journal of Immunology, vol.166, issue.1, pp.582-587, 2001.
DOI : 10.4049/jimmunol.166.1.582

H. M. Tse, S. I. Josephy, E. D. Chan, D. Fouts, and A. M. Cooper, Activation of the Mitogen-Activated Protein Kinase Signaling Pathway Is Instrumental in Determining the Ability of Mycobacterium avium to Grow in Murine Macrophages, The Journal of Immunology, vol.168, issue.2, pp.825-833, 2002.
DOI : 10.4049/jimmunol.168.2.825

C. S. Yang, J. S. Lee, and S. B. Jung, Differential regulation of interleukin-12 and tumour necrosis factor-alpha by phosphatidylinositol 3-kinase and ERK 1/2 pathways during Mycobacterium tuberculosis infection, Clinical and Experimental Immunology, vol.164, issue.1, pp.150-160, 2005.
DOI : 10.1074/jbc.271.21.12133

C. Kuijl, N. D. Savage, and M. Marsman, Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1, Nature, vol.24, issue.7170, pp.725-730, 2007.
DOI : 10.1038/nature06345

R. A. Fratti, J. Chua, I. Vergne, and V. Deretic, Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest, Proceedings of the National Academy of Sciences, vol.100, issue.9, pp.5437-5442, 2003.
DOI : 10.1073/pnas.0737613100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154363

I. Vergne, J. Chua, and V. Deretic, /Calmodulin-PI3K hVPS34 Cascade, The Journal of Experimental Medicine, vol.62, issue.4, pp.653-659, 2003.
DOI : 10.1093/emboj/cdf642

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194170

B. M. Burgering, A brief introduction to FOXOlogy, Oncogene, vol.14, issue.16, pp.2258-2262, 2008.
DOI : 10.1074/jbc.M106091200

M. Cui, Y. Huang, Y. Zhao, and J. Zheng, Transcription Factor FOXO3a Mediates Apoptosis in HIV-1-Infected Macrophages, The Journal of Immunology, vol.180, issue.2, pp.898-906, 2008.
DOI : 10.4049/jimmunol.180.2.898

M. Essafi, M. Haoues, A. Mallavialle, N. Laabidi, M. Deckert et al., FOXO3a Transcription Factor mediates Apoptosis of Mycobacterium bovis BCG-Infected Macrophages, International Journal of Infectious Diseases, vol.14, p.128, 2010.
DOI : 10.1016/j.ijid.2010.02.1769

URL : https://hal.archives-ouvertes.fr/hal-01358551