M. Tisdale, Cachexia in cancer patients, Nature Reviews Cancer, vol.17, issue.11, pp.862-871, 2002.
DOI : 10.1038/nrc927

D. Mccarthy, Rethinking Nutritional Support for Persons with Cancer Cachexia, Biological Research for Nursing, vol.5, issue.1, pp.3-17, 2003.
DOI : 10.1177/1099800403005001001

S. Al-majid and D. Mccarthy, Cancer-Induced Fatigue and Skeletal Muscle Wasting: The Role of Exercise, Biological Research For Nursing, vol.279, issue.2, pp.186-197, 2001.
DOI : 10.1177/109980040100200304

W. Evans, J. Morley, and J. Argilés, Cachexia: A new definition, Clinical Nutrition, vol.27, issue.6, pp.793-799, 2008.
DOI : 10.1016/j.clnu.2008.06.013

J. Windsor and G. Hill, Risk Factors for Postoperative Pneumonia, Annals of Surgery, vol.208, issue.2, pp.209-214, 1988.
DOI : 10.1097/00000658-198808000-00013

W. Mitch and A. Goldberg, Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway, N Engl J Med, vol.335, pp.1897-1905, 1996.

P. Cogswell, D. Guttridge, W. Funkhouser, A. Baldwin, and . Jr, Selective activation of NF-??B subunits in human breast cancer: potential roles for NF-??B2/p52 and for Bcl-3, Oncogene, vol.19, issue.9, pp.1123-1131, 2000.
DOI : 10.1038/sj.onc.1203412

D. Guttridge, M. Mayo, L. Madrid, C. Wang, A. Baldwin et al., NF-kappa B-Induced Loss of MyoD Messenger RNA: Possible Role in Muscle Decay and Cachexia, Science, vol.289, issue.5488, pp.2363-2366, 2000.
DOI : 10.1126/science.289.5488.2363

P. Hasselgren and J. Fischer, Muscle Cachexia: Current Concepts of Intracellular Mechanisms and Molecular Regulation, Annals of Surgery, vol.233, issue.1, pp.9-17, 2001.
DOI : 10.1097/00000658-200101000-00003

S. Chen, D. Guttridge, and Z. You, WNT-1 Signaling Inhibits Apoptosis by Activating ??-Catenin/T Cell Factor???Mediated Transcription, The Journal of Cell Biology, vol.18, issue.1, pp.87-96, 2001.
DOI : 10.1101/gad.12.13.1941

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193656/pdf

Z. You, D. Saims, and S. Chen, Wnt signaling promotes oncogenic transformation by inhibiting c-Myc???induced apoptosis, The Journal of Cell Biology, vol.14, issue.3, pp.429-440, 2002.
DOI : 10.1101/gad.12.15.2424

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173296

P. Hasselgren, C. Wray, and J. Mammen, Molecular Regulation of Muscle Cachexia: It May Be More Than the Proteasome, Biochemical and Biophysical Research Communications, vol.290, issue.1, pp.1-10, 2002.
DOI : 10.1006/bbrc.2001.5849

J. Argilés, S. Busquets, and F. López-soriano, The role of uncoupling proteins in pathophysiological states, Biochemical and Biophysical Research Communications, vol.293, issue.4, pp.1145-1152, 2002.
DOI : 10.1016/S0006-291X(02)00355-8

J. Ardenkjaer-larsen, B. Fridlund, and A. Gram, Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR, Proceedings of the National Academy of Sciences, vol.100, issue.18, pp.10158-10163, 2003.
DOI : 10.1073/pnas.1733835100

H. Gutstein, Mechanisms underlying cancer-induced symptoms, Drugs of Today, vol.39, issue.10, pp.815-822, 2003.
DOI : 10.1358/dot.2003.39.10.799474

S. Acharyya, K. Ladner, and L. Nelsen, Cancer cachexia is regulated by selective targeting of skeletal muscle gene products, Journal of Clinical Investigation, vol.114, issue.3, pp.370-378, 2004.
DOI : 10.1172/JCI20174DS1

D. Guttridge, Signaling pathways weigh in on decisions to make or break skeletal muscle, Current Opinion in Clinical Nutrition and Metabolic Care, vol.7, issue.4, pp.443-450, 2004.
DOI : 10.1097/01.mco.0000134364.61406.26

S. Lecker, R. Jagoe, and A. Gilbert, Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression, The FASEB Journal, vol.18, issue.1, pp.39-51, 2004.
DOI : 10.1096/fj.03-0610com

M. Sandri, C. Sandri, and A. Gilbert, Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy, Cell, vol.117, issue.3, pp.399-412, 2004.
DOI : 10.1016/S0092-8674(04)00400-3

S. Acharyya, M. Butchbach, and Z. Sahenk, Dystrophin glycoprotein complex dysfunction: A regulatory link between muscular dystrophy and cancer cachexia, Cancer Cell, vol.8, issue.5, pp.421-432, 2005.
DOI : 10.1016/j.ccr.2005.10.004

URL : http://doi.org/10.1016/j.ccr.2005.10.004

J. Argilés, S. Busquets, A. Felipe, and F. López-soriano, Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia, The International Journal of Biochemistry & Cell Biology, vol.37, issue.5, pp.1084-1104, 2005.
DOI : 10.1016/j.biocel.2004.10.003

J. Argilés, S. Busquets, and F. López-soriano, The pivotal role of cytokines in muscle wasting during cancer, The International Journal of Biochemistry & Cell Biology, vol.37, issue.10, pp.2036-2046, 2005.
DOI : 10.1016/j.biocel.2005.03.014

Y. Li, Y. Chen, and J. John, TNF-?? acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle, The FASEB Journal, vol.19, issue.3, pp.362-370, 2005.
DOI : 10.1096/fj.04-2364com

R. Skipworth, G. Stewart, J. Ross, D. Guttridge, and K. Fearon, The molecular mechanisms of skeletal muscle wasting: Implications for therapy, The Surgeon, vol.4, issue.5, pp.273-283, 2006.
DOI : 10.1016/S1479-666X(06)80004-1

M. Sandri, J. Lin, and C. Handschin, PGC-1?? protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription, Proceedings of the National Academy of Sciences, vol.103, issue.44, pp.16260-16265, 2006.
DOI : 10.1073/pnas.0607795103

S. Busquets, C. Deans, and M. Figueras, Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients, Clinical Nutrition, vol.26, issue.5, pp.614-618, 2007.
DOI : 10.1016/j.clnu.2007.06.005

L. Melstrom, K. Melstrom, . Jr, X. Ding, and A. Te, Mechanisms of skeletal muscle degradation and its therapy in cancer cachexia, Histol Histopathol, vol.22, pp.805-814, 2007.

S. Acharyya and D. Guttridge, Cancer Cachexia Signaling Pathways Continue to Emerge Yet Much Still Points to the Proteasome, Clinical Cancer Research, vol.13, issue.5, pp.1356-1361, 2007.
DOI : 10.1158/1078-0432.CCR-06-2307

J. Zhao, J. Brault, and A. Schild, FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells, Cell Metabolism, vol.6, issue.6, pp.472-483, 2007.
DOI : 10.1016/j.cmet.2007.11.004

J. Argilés, F. López-soriano, and S. Busquets, Apoptosis signalling is essential and precedes protein degradation in wasting skeletal muscle during catabolic conditions, The International Journal of Biochemistry & Cell Biology, vol.40, issue.9, pp.1674-1678, 2008.
DOI : 10.1016/j.biocel.2008.02.001

Z. Arany, PGC-1 coactivators and skeletal muscle adaptations in health and disease, Current Opinion in Genetics & Development, vol.18, issue.5, pp.426-434, 2008.
DOI : 10.1016/j.gde.2008.07.018

M. Sandri, Signaling in Muscle Atrophy and Hypertrophy, Physiology, vol.23, issue.3, pp.160-170, 2008.
DOI : 10.1152/physiol.00041.2007

M. Tisdale, Mechanisms of Cancer Cachexia, Physiological Reviews, vol.89, issue.2, pp.381-410, 2009.
DOI : 10.1152/physrev.00016.2008

T. Popiela, R. Lucchi, and F. Giongo, Methylprednisolone as palliative therapy for female terminal cancer patients. The Methylprednisolone Female Preterminal Cancer Study Group

C. Kardinal, C. Loprinzi, and D. Schaid, A controlled trial of cyproheptadine in cancer patients with anorexia and/or cachexia, Cancer, vol.6, issue.12, pp.2657-2662, 1990.
DOI : 10.1002/1097-0142(19900615)65:12<2657::AID-CNCR2820651210>3.0.CO;2-S

C. Loprinzi, D. Schaid, A. Dose, N. Burnham, and M. Jensen, Body-composition changes in patients who gain weight while receiving megestrol acetate., Journal of Clinical Oncology, vol.11, issue.1, pp.152-154, 1993.
DOI : 10.1200/JCO.1993.11.1.152

J. Argilés, V. Almendro, S. Busquets, and F. López-soriano, The Pharmacological Treatment of Cachexia, Current Drug Targets, vol.5, issue.3, pp.265-277, 2004.
DOI : 10.2174/1389450043490505

S. Busquets, M. Figueras, and G. Fuster, Anticachectic Effects of Formoterol: A Drug for Potential Treatment of Muscle Wasting, Cancer Research, vol.64, issue.18, pp.6725-6731, 2004.
DOI : 10.1158/0008-5472.CAN-04-0425

N. Neary, C. Small, and A. Wren, Ghrelin Increases Energy Intake in Cancer Patients with Impaired Appetite: Acute, Randomized, Placebo-Controlled Trial, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.6, pp.2832-2836, 2004.
DOI : 10.1210/jc.2003-031768

H. Smith, S. Wyke, and M. Tisdale, Mechanism of the Attenuation of Proteolysis-Inducing Factor Stimulated Protein Degradation in Muscle by ??-Hydroxy-??-Methylbutyrate, Cancer Research, vol.64, issue.23, pp.8731-8735, 2004.
DOI : 10.1158/0008-5472.CAN-04-1760

J. Gordon, T. Trebble, R. Ellis, H. Duncan, T. Johns et al., Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial, Gut, vol.54, issue.4, pp.540-545, 2005.
DOI : 10.1136/gut.2004.047563

J. Argilés, F. López-soriano, and S. Busquets, Emerging drugs for cancer cachexia, Expert Opinion on Emerging Drugs, vol.50, issue.4, pp.555-570, 2007.
DOI : 10.1200/JCO.2006.09.2627

G. Fuster, S. Busquets, V. Almendro, F. López-soriano, and J. Argilés, Antiproteolytic effects of plasma from hibernating bears: A new approach for muscle wasting therapy?, Clinical Nutrition, vol.26, issue.5, pp.658-661, 2007.
DOI : 10.1016/j.clnu.2007.07.003

R. Moore-carrasco, S. Busquets, V. Almendro, M. Palanki, F. López-soriano et al., The AP-1/NF-kappaB double inhibitor SP100030 can revert muscle wasting during experimental cancer cachexia, Int J Oncol, vol.30, pp.1239-1245, 2007.

J. Argilés, M. Figueras, and E. Ametller, Effects of CRF2R agonist on tumor growth and cachexia in mice implanted with Lewis lung carcinoma cells, Muscle & Nerve, vol.184, issue.2, pp.190-195, 2008.
DOI : 10.1002/mus.20899

L. Fong, Y. Jiang, and M. Riley, Prevention of upper aerodigestive tract cancer in zinc-deficient rodents: Inefficacy of genetic or pharmacological disruption of COX-2, International Journal of Cancer, vol.164, issue.5, pp.978-989, 2008.
DOI : 10.1002/ijc.23221

G. Mantovani and C. Madeddu, Cyclooxygenase-2 inhibitors and antioxidants in the treatment of cachexia, Current Opinion in Supportive and Palliative Care, vol.2, issue.4, pp.275-281, 2008.
DOI : 10.1097/SPC.0b013e32830f47e4

N. Alamdari, O. Neal, P. Hasselgren, and P. , Curcumin and muscle wasting???A new role for an old drug?, Nutrition, vol.25, issue.2, pp.125-129, 2009.
DOI : 10.1016/j.nut.2008.09.002

J. Argilés, F. López-soriano, and S. Busquets, Therapeutic potential of interleukin-15: a myokine involved in muscle wasting and adiposity, Drug Discovery Today, vol.14, issue.3-4, pp.208-213, 2009.
DOI : 10.1016/j.drudis.2008.10.010

S. Beijer, P. Hupperets, and B. Van-den-borne, Effect of adenosine 5???-triphosphate infusions on the nutritional status and survival of preterminal cancer patients, Anti-Cancer Drugs, vol.20, issue.7, pp.625-633, 2009.
DOI : 10.1097/CAD.0b013e32832d4f22

J. Lagirand-cantaloube, K. Cornille, A. Csibi, S. Batonnet-pichon, M. Leibovitch et al., Inhibition of Atrogin-1/MAFbx Mediated MyoD Proteolysis Prevents Skeletal Muscle Atrophy In Vivo, PLoS ONE, vol.279, issue.3, p.4973, 2009.
DOI : 10.1371/journal.pone.0004973.s002

C. Madeddu and G. Mantovani, An update on promising agents for the treatment of cancer cachexia, Current Opinion in Supportive and Palliative Care, vol.3, issue.4, pp.258-262, 2009.
DOI : 10.1097/SPC.0b013e3283311c6f

G. Mantovani, A. Macciò, and C. Madeddu, Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia, Journal of Molecular Medicine, vol.24, issue.Suppl 2, pp.85-92, 2010.
DOI : 10.1007/s00109-009-0547-z

G. Mantovani and C. Madeddu, Cancer cachexia: medical management, Supportive Care in Cancer, vol.44, issue.15S, pp.1-9, 2010.
DOI : 10.1007/s00520-009-0722-3

K. Murphy and G. Lynch, Update on emerging drugs for cancer cachexia, Expert Opinion on Emerging Drugs, vol.91, issue.18, pp.619-632, 2009.
DOI : 10.1038/sj.bjc.6690654

J. Noé, L-Glutamine Use in the Treatment and Prevention of Mucositis and Cachexia: A Naturopathic Perspective, Integrative Cancer Therapies, vol.8, issue.4, pp.409-415, 2009.
DOI : 10.1177/1534735409348865

S. Russell, P. Siren, M. Siren, and M. Tisdale, Attenuation of skeletal muscle atrophy in cancer cachexia by d-myo-inositol 1,2,6-triphosphate, Cancer Chemotherapy and Pharmacology, vol.61, issue.3, pp.517-527, 2009.
DOI : 10.1007/s00280-008-0899-z

R. Siddiqui, S. Hassan, and K. Harvey, Attenuation of proteolysis and muscle wasting by curcumin c3 complex in MAC16 colon tumour-bearing mice, British Journal of Nutrition, vol.5, issue.07, pp.967-975, 2009.
DOI : 10.1016/S1097-2765(04)00211-4

L. Taylor, L. Pletschen, J. Arends, C. Unger, and U. Massing, Marine phospholipids???a promising new dietary approach to tumor-associated weight loss, Supportive Care in Cancer, vol.21, issue.2, pp.159-170, 2010.
DOI : 10.1007/s00520-009-0640-4

K. Van-norren, D. Kegler, and J. Argiles, Dietary supplementation with a specific combination of high protein, leucine, and fish oil improves muscle function and daily activity in tumour-bearing cachectic mice, British Journal of Cancer, vol.129, issue.5, pp.713-722, 2009.
DOI : 10.1016/0899-9007(95)00078-X

P. Weyermann, R. Dallmann, and J. Magyar, Orally Available Selective Melanocortin-4 Receptor Antagonists Stimulate Food Intake and Reduce Cancer-Induced Cachexia in Mice, PLoS ONE, vol.50, issue.3, p.4774, 2009.
DOI : 10.1371/journal.pone.0004774.t001

K. Padfield, L. Astrakas, and Q. Zhang, Burn injury causes mitochondrial dysfunction in skeletal muscle, Proceedings of the National Academy of Sciences, vol.102, issue.15, pp.5368-5373, 2005.
DOI : 10.1073/pnas.0501211102

L. Astrakas, I. Goljer, and S. Yasuhara, Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis, The FASEB Journal, vol.19, issue.11, pp.1431-1440, 2005.
DOI : 10.1096/fj.04-2005com

K. Padfield, Q. Zhang, and S. Gopalan, Local and Distant Burn Injury Alter Immuno-Inflammatory Gene Expression in Skeletal Muscle, The Journal of Trauma: Injury, Infection, and Critical Care, vol.61, issue.2, pp.280-292, 2006.
DOI : 10.1097/01.ta.0000230567.56797.6c

Q. Zhang, H. Cao, and L. Astrakas, Uncoupling protein 3 expression and intramyocellular lipid accumulation by NMR following local burn trauma, International Journal of Molecular Medicine, vol.18, pp.1223-1229, 2006.
DOI : 10.3892/ijmm.18.6.1223

N. Khan, S. Mupparaju, and D. Mintzopoulos, Burn trauma in skeletal muscle results in oxidative stress as assessed by in vivo electron paramegnetic resonance, Mol Med Report, vol.1, pp.813-819, 2008.

A. Tzika, L. Astrakas, and H. Cao, Murine intramyocellular lipids quantified by NMR act as metabolic biomarkers in burn trauma, International Journal of Molecular Medicine, vol.21, pp.825-832, 2008.
DOI : 10.3892/ijmm.21.6.825

A. Tzika, D. Mintzopoulos, and K. Padfield, Reduced rate of adenosine triphosphate synthesis by in vivo 31 P nuclear magnetic resonance spectroscopy and downregulation of PGC-1? in distal skeletal muscle following burn, Int J Mol Med, vol.21, pp.201-208, 2008.

V. Righi, O. Andronesi, D. Mintzopoulos, and A. Tzika, Molecular characterization and quantification using state of the art solidstate adiabatic TOBSY NMR in burn trauma, Int J Mol Med, vol.24, pp.749-757, 2009.

A. Tzika, D. Mintzopoulos, M. Mindrinos, J. Zhang, L. Rahme et al., Microarray analysis suggests that burn injury results in mitochondrial dysfunction in human skeletal muscle, Int J Mol Med, vol.24, pp.387-392, 2009.

C. Constantinou, F. De-oliveira, C. Mintzopoulos, and D. , Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia, Int J Mol Med, vol.27, pp.15-24, 2011.

N. Bennani-baiti and D. Walsh, Animal models of the cancer anorexia???cachexia syndrome, Supportive Care in Cancer, vol.47, issue.3, pp.1451-1463, 2011.
DOI : 10.1007/s00520-010-0972-0

Y. Tanaka, H. Eda, and T. Tanaka, Experimental cancer cachexia induced by transplantable colon 26 adenocarcinoma in mice, Cancer Res, vol.50, pp.2290-2295, 1990.

G. Diffee, K. Kalfas, S. Majid, and D. Mccarthy, Altered expression of skeletal muscle myosin isoforms in cancer cachexia, AJP: Cell Physiology, vol.283, issue.5, pp.1376-1382, 2002.
DOI : 10.1152/ajpcell.00154.2002

M. Gorselink, S. Vaessen, and L. Van-der-flier, Mass-dependent decline of skeletal muscle function in cancer cachexia, Muscle & Nerve, vol.21, issue.5, pp.691-693, 2006.
DOI : 10.1002/mus.20467

M. Bibby, J. Double, S. Ali, K. Fearon, R. Brennan et al., Characterization of a transplantable adenocarcinoma of the mouse colon producing cachexia in recipient animals, J Natl Cancer Inst, vol.78, pp.539-546, 1987.

C. Bing, M. Brown, P. King, P. Collins, M. Tisdale et al., Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia, Cancer Res, vol.60, pp.2405-2410, 2000.

P. Collins, C. Bing, P. Mcculloch, and G. Williams, Muscle UCP-3 mRNA levels are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans, British Journal of Cancer, vol.48, issue.3, pp.372-375, 2002.
DOI : 10.1038/sj.bjc.6600074

J. Ackerman, T. Grove, G. Wong, D. Gadian, and G. Radda, Mapping of metabolites in whole animals by 31P NMR using surface coils, Nature, vol.170, issue.5743, pp.167-170, 1980.
DOI : 10.1038/283167a0

B. Hitzig, J. Prichard, and H. Kantor, NMR spectroscopy as an investigative technique in physiology, FASEB J, vol.1, pp.22-31, 1987.

A. Shestov, J. Valette, D. Deelchand, K. U?urbil, and P. Henry, Metabolic Modeling of Dynamic Brain 13C NMR Multiplet Data: Concepts and Simulations with a Two-Compartment Neuronal-Glial Model, Neurochemical Research, vol.18, issue.5???6, pp.2388-2401, 2012.
DOI : 10.1007/s11064-012-0782-5

B. Jucker, J. Ren, and S. Dufour, 13C/31P NMR Assessment of Mitochondrial Energy Coupling in Skeletal Muscle of Awake Fed and Fasted Rats: RELATIONSHIP WITH UNCOUPLING PROTEIN 3 EXPRESSION, Journal of Biological Chemistry, vol.275, issue.50, pp.39279-39286, 2000.
DOI : 10.1074/jbc.M007760200

D. Befroy, F. Petersen, K. Rothman, D. Shulman, and G. , Chapter 21 Assessment of In Vivo Mitochondrial Metabolism by Magnetic Resonance Spectroscopy, Methods Enzymol, vol.457, pp.373-393, 2009.
DOI : 10.1016/S0076-6879(09)05021-6

J. Cobas and M. Bernstein, A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data, Journal of Magnetic Resonance, vol.183, issue.1, pp.145-151, 2006.
DOI : 10.1016/j.jmr.2006.07.013

S. Forsen and R. Hoffman, Study of Moderately Rapid Chemical Exchange Reactions by Means of Nuclear Magnetic Double Resonance, The Journal of Chemical Physics, vol.39, issue.11, pp.2892-2901, 1963.
DOI : 10.1063/1.1734121

K. Leimer, R. Rice, and C. Gehrke, Complete mass spectra of N-trifluoroacetyl-n-butyl esters of amino acids, Journal of Chromatography A, vol.141, issue.2, pp.121-144, 1977.
DOI : 10.1016/S0021-9673(00)99131-3

G. Cline, A. Vidal-puig, S. Dufour, K. Cadman, B. Lowell et al., Effects of Uncoupling Protein-3 Gene Disruption on Mitochondrial Energy Metabolism, Journal of Biological Chemistry, vol.276, issue.23, pp.20240-20244, 2001.
DOI : 10.1074/jbc.M102540200

S. Busquets, V. Almendro, E. Barreiro, M. Figueras, J. Argilés et al., Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake, FEBS Letters, vol.83, issue.3, pp.717-722, 2005.
DOI : 10.1016/j.febslet.2004.12.050

D. Sanchís, S. Busquets, B. Alvarez, D. Ricquier, F. López-soriano et al., Skeletal muscle UCP2 and UCP3 gene expression in a rat cancer cachexia model, FEBS Letters, vol.261, issue.3, pp.415-418, 1998.
DOI : 10.1016/S0014-5793(98)01178-8

S. Busquets, D. Sanchís, B. Alvarez, D. Ricquier, F. López-soriano et al., In the rat, tumor necrosis factor ?? administration results in an increase in both UCP2 and UCP3 mRNAs in skeletal muscle: a possible mechanism for cytokine-induced thermogenesis?, FEBS Letters, vol.240, issue.3, pp.348-350, 1998.
DOI : 10.1016/S0014-5793(98)01485-9

J. Alger and R. Shulman, NMR studies of enzymatic rates in vitro and in vivo by magnetization transfer, Quarterly Reviews of Biophysics, vol.64, issue.01, pp.83-124, 1984.
DOI : 10.1016/S0006-3495(79)85154-1

E. Sako, P. Kingsley-hickman, A. From, J. Foker, and K. Ugurbil, ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31 P NMR, J Biol Chem, vol.263, pp.10600-10607, 1988.

P. Kingsley-hickman, E. Sako, K. U?urbil, A. From, and J. Foker, P NMR measurement of mitochondrial uncoupling in isolated rat hearts, J Biol Chem, vol.265, pp.31-1545, 1990.

B. Jucker, S. Dufour, and J. Ren, Assessment of mitochondrial energy coupling in vivo by 13C/31P NMR, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6880-6884, 2000.
DOI : 10.1073/pnas.120131997

G. Fuster, S. Busquets, and E. Ametller, Are Peroxisome Proliferator-Activated Receptors Involved in Skeletal Muscle Wasting during Experimental Cancer Cachexia? Role of ??2-Adrenergic Agonists, Cancer Research, vol.67, issue.13, pp.6512-6519, 2007.
DOI : 10.1158/0008-5472.CAN-07-0231

T. Roche, J. Baker, and X. Yan, Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms, Prog Nucleic Acid Res Mol Biol, vol.70, pp.33-75, 2001.
DOI : 10.1016/S0079-6603(01)70013-X

J. St-pierre, J. Lin, and S. Krauss, Bioenergetic Analysis of Peroxisome Proliferator-activated Receptor ?? Coactivators 1?? and 1?? (PGC-1?? and PGC-1??) in Muscle Cells, Journal of Biological Chemistry, vol.278, issue.29, pp.26597-26603, 2003.
DOI : 10.1074/jbc.M301850200

M. Uldry, W. Yang, J. St-pierre, J. Lin, P. Seale et al., Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation, Cell Metabolism, vol.3, issue.5, pp.333-341, 2006.
DOI : 10.1016/j.cmet.2006.04.002

A. Giordano, M. Calvani, O. Petillo, M. Carteni, M. Melone et al., Skeletal muscle metabolism in physiology and in cancer disease, Journal of Cellular Biochemistry, vol.98, issue.1, pp.170-186, 2003.
DOI : 10.1002/jcb.10601

M. Navratil, A. Terman, and E. Arriaga, Giant mitochondria do not fuse and exchange their contents with normal mitochondria, Experimental Cell Research, vol.314, issue.1, pp.164-172, 2008.
DOI : 10.1016/j.yexcr.2007.09.013

A. Shum, T. Mahendradatta, and R. Taylor, Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting, Aging, vol.4, issue.2, pp.133-143, 2012.
DOI : 10.18632/aging.100436

M. Van-royen, N. Carbó, and S. Busquets, DNA Fragmentation Occurs in Skeletal Muscle during Tumor Growth: A Link with Cancer Cachexia?, Biochemical and Biophysical Research Communications, vol.270, issue.2, pp.533-537, 2000.
DOI : 10.1006/bbrc.2000.2462

C. Dejong, S. Busquets, and A. Moses, Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia, Oncol Rep, vol.14, pp.257-263, 2005.

E. Barreiro, B. De-la-puente, S. Busquets, F. López-soriano, J. Gea et al., Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats, FEBS Letters, vol.380, issue.7, pp.1646-1652, 2005.
DOI : 10.1016/j.febslet.2005.02.017

A. Boveris and C. B. , The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen, Biochemical Journal, vol.134, issue.3, pp.707-716, 1973.
DOI : 10.1042/bj1340707

J. Turrens and A. Boveris, Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria, Biochemical Journal, vol.191, issue.2, pp.421-427, 1980.
DOI : 10.1042/bj1910421

J. Turrens, B. Freeman, J. Levitt, and J. Crapo, The effect of hyperoxia on superoxide production by lung submitochondrial particles, Archives of Biochemistry and Biophysics, vol.217, issue.2, pp.401-410, 1982.
DOI : 10.1016/0003-9861(82)90518-5

B. Bandy and A. Davison, Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging?, Free Radical Biology and Medicine, vol.8, issue.6, pp.523-539, 1990.
DOI : 10.1016/0891-5849(90)90152-9

K. Kwong, J. Belliveau, and D. Chesler, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation., Proceedings of the National Academy of Sciences, vol.89, issue.12, pp.5675-5679, 1992.
DOI : 10.1073/pnas.89.12.5675

L. Esposito, S. Melov, A. Panov, B. Cottrell, and D. Wallace, Mitochondrial disease in mouse results in increased oxidative stress, Proceedings of the National Academy of Sciences, vol.96, issue.9, pp.4820-4825, 1999.
DOI : 10.1073/pnas.96.9.4820

S. Imam, B. Karahalil, B. Hogue, N. Souza-pinto, and V. Bohr, Mitochondrial and nuclear DNA-repair capacity of various brain regions in mouse is altered in an age-dependent manner, Neurobiology of Aging, vol.27, issue.8, pp.1129-1136, 2006.
DOI : 10.1016/j.neurobiolaging.2005.06.002