L. Rahme, F. Ausubel, H. Cao, E. Drenkard, and B. Goumnerov, Plants and animals share functionally common bacterial virulence factors, Proceedings of the National Academy of Sciences, vol.97, issue.16, pp.8815-8821, 2000.
DOI : 10.1073/pnas.97.16.8815

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC34017

X. Bertrand, M. Thouverez, D. Talon, A. Boillot, and G. Capellier, Endemicity, molecular diversity and colonisation routes of Pseudomonas aeruginosa in intensive care units, Intensive Care Medicine, vol.27, issue.8, pp.1263-1268, 2001.
DOI : 10.1007/s001340100979

J. Lyczak, C. Cannon, and G. Pier, Lung Infections Associated with Cystic Fibrosis, Clinical Microbiology Reviews, vol.15, issue.2, pp.194-222, 2002.
DOI : 10.1128/CMR.15.2.194-222.2002

R. Gang, R. Bang, S. Sanyal, E. Mokaddas, and A. Lari, Pseudomonas aeruginosa septicaemia in burns, Burns, vol.25, issue.7, pp.611-616, 1999.
DOI : 10.1016/S0305-4179(99)00042-X

P. Berthelot, F. Grattard, F. Mallaval, R. A. Lucht, and F. , ??pid??miologie des infections nosocomiales ?? Pseudomonas aeruginosa, Burkholderia cepacia et Stenotrophomonas maltophilia, Pathologie Biologie, vol.53, issue.6, pp.341-348, 2005.
DOI : 10.1016/j.patbio.2004.09.006

G. Pierce, Pseudomonas aeruginosa, Candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control, Journal of Industrial Microbiology & Biotechnology, vol.25, issue.7, pp.309-318, 2005.
DOI : 10.1007/s10295-005-0225-2

J. Driscoll, S. Brody, and M. Kollef, The Epidemiology, Pathogenesis and Treatment of Pseudomonas aeruginosa Infections, Drugs, vol.111, issue.3, pp.351-368, 2007.
DOI : 10.2165/00003495-200767030-00003

T. Bjarnsholt and M. Givskov, The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa, Analytical and Bioanalytical Chemistry, vol.24, issue.2, pp.409-414, 2007.
DOI : 10.1007/s00216-006-0774-x

P. Williams and M. Camara, Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules, Current Opinion in Microbiology, vol.12, issue.2, pp.182-191, 2009.
DOI : 10.1016/j.mib.2009.01.005

E. Déziel, F. Lépine, S. Milot, J. He, and M. Mindrinos, Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication, Proceedings of the National Academy of Sciences, vol.101, issue.5, pp.1339-1344, 2004.
DOI : 10.1073/pnas.0307694100

E. Déziel, S. Gopalan, A. Tampakaki, F. Lépine, and K. Padfield, The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl- l-homoserine lactones, Molecular Microbiology, vol.273, issue.Suppl. 1, pp.998-1014, 2005.
DOI : 10.1111/j.1365-2958.2004.04448.x

L. Gallagher, S. Mcknight, M. Kuznetsova, E. Pesci, and C. Manoil, Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa, Journal of Bacteriology, vol.184, issue.23, pp.6472-6480, 2002.
DOI : 10.1128/JB.184.23.6472-6480.2002

E. Pesci, J. Milbank, J. Pearson, S. Mcknight, and A. Kende, Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa, Proceedings of the National Academy of Sciences, vol.96, issue.20, pp.11229-11234, 1999.
DOI : 10.1073/pnas.96.20.11229

T. Klein, C. Henn, J. De-jong, C. Zimmer, and B. Kirsch, Transcriptional Regulator PqsR: Biophysically Guided Hit Discovery and Optimization, ACS Chemical Biology, vol.7, issue.9, pp.1496-1501, 2012.
DOI : 10.1021/cb300208g

C. Lu, B. Kirsch, C. Zimmer, J. De-jong, and C. Henn, Discovery of Antagonists of PqsR, a Key Player in 2-Alkyl-4-quinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa, Chemistry & Biology, vol.19, issue.3, pp.381-390, 2012.
DOI : 10.1016/j.chembiol.2012.01.015

M. Storz, C. Maurer, C. Zimmer, N. Wagner, and C. Brengel, Validation of PqsD as an Anti-biofilm Target in Pseudomonas aeruginosa by Development of Small-Molecule Inhibitors, Journal of the American Chemical Society, vol.134, issue.39, pp.16143-16146, 2012.
DOI : 10.1021/ja3072397

G. Rampioni, C. Pustelny, M. Fletcher, V. Wright, and M. Bruce, Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts, Environmental microbiology, vol.12, pp.1659-1673, 2010.

R. Hazan, J. He, G. Xiao, V. Dekimpe, and Y. Apidianakis, Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence, PLoS Pathogens, vol.44, issue.3, p.1000810, 2010.
DOI : 10.1371/journal.ppat.1000810.s010

J. Farrow, PqsE Functions Independently of PqsR-Pseudomonas Quinolone Signal and Enhances the rhl Quorum-Sensing System, Journal of Bacteriology, vol.190, issue.21, pp.7043-7051, 2008.
DOI : 10.1128/JB.00753-08

S. Yu, V. Jensen, J. Seeliger, I. Feldmann, and S. Weber, Quinolone Signal (PQS) Response Protein, Biochemistry, vol.48, issue.43, pp.10298-10307, 2009.
DOI : 10.1021/bi900123j

Y. Dehouck, A. Grosfils, B. Folch, D. Gilis, and P. Bogaerts, Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0, Bioinformatics, vol.25, issue.19, pp.2537-2543, 2009.
DOI : 10.1093/bioinformatics/btp445

S. Yu, Assessment of Pseudomonas quinolone signal response protein PqsE and preliminary functional annotation of hypothetical protein PA0803 from Pseudomonas aeruginosa: Max-Planck-Institute of Molecular Physiology, 2009.

D. Essar, L. Eberly, A. Hadero, and I. Crawford, Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications., Journal of Bacteriology, vol.172, issue.2, pp.884-900, 1990.
DOI : 10.1128/jb.172.2.884-900.1990

S. Diggle, P. Lumjiaktase, F. Dipilato, K. Winzer, and M. Kunakorn, Functional Genetic Analysis Reveals a 2-Alkyl-4-Quinolone Signaling System in the Human Pathogen Burkholderia pseudomallei and Related Bacteria, Chemistry & Biology, vol.13, issue.7, pp.701-710, 2006.
DOI : 10.1016/j.chembiol.2006.05.006

L. Vial, F. Lépine, S. Milot, M. Groleau, and V. Dekimpe, Burkholderia pseudomallei, B. thailandensis, and B. ambifaria Produce 4-Hydroxy-2-Alkylquinoline Analogues with a Methyl Group at the 3 Position That Is Required for Quorum-Sensing Regulation, Journal of Bacteriology, vol.190, issue.15, pp.5339-5352, 2008.
DOI : 10.1128/JB.00400-08

M. Larkin, G. Blackshields, N. Brown, R. Chenna, and P. Mcgettigan, Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, issue.21, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

A. Murzin, S. Brenner, T. Hubbard, and C. Chothia, SCOP: A structural classification of proteins database for the investigation of sequences and structures, Journal of Molecular Biology, vol.247, issue.4, pp.536-540, 1995.
DOI : 10.1016/S0022-2836(05)80134-2

F. Armougom, S. Moretti, O. Poirot, S. Audic, and P. Dumas, Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee, Nucleic Acids Research, vol.34, issue.Web Server, pp.604-608, 2006.
DOI : 10.1093/nar/gkl092

H. Daiyasu, K. Osaka, Y. Ishino, and H. Toh, Expansion of the zinc metallo-hydrolase family of the ??-lactamase fold, FEBS Letters, vol.2, issue.1, pp.1-6, 2001.
DOI : 10.1016/S0014-5793(01)02686-2

R. Finn, J. Mistry, J. Tate, P. Coggill, and A. Heger, The Pfam protein families database, Nucleic Acids Research, vol.38, issue.Database, pp.211-222, 2010.
DOI : 10.1093/nar/gkp985

URL : https://hal.archives-ouvertes.fr/hal-01294685

V. Simossis and J. Heringa, Integrating Protein Secondary Structure Prediction and Multiple Sequence Alignment, Current Protein & Peptide Science, vol.5, issue.4, pp.249-266, 2004.
DOI : 10.2174/1389203043379675

R. Valverde, L. Edwards, and L. Regan, Structure and function of KH domains, FEBS Journal, vol.272, issue.11, pp.2712-2726, 2008.
DOI : 10.1111/j.1742-4658.2008.06411.x

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1002/bip.360221211

G. Rose, A. Geselowitz, G. Lesser, R. Lee, and M. Zehfus, Hydrophobicity of amino acid residues in globular proteins, Science, vol.229, issue.4716, pp.834-838, 1985.
DOI : 10.1126/science.4023714

D. Gilis and M. Rooman, Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence, Journal of Molecular Biology, vol.272, issue.2, pp.276-290, 1997.
DOI : 10.1006/jmbi.1997.1237

R. Paul-soto, R. Bauer, J. Frere, M. Galleni, and W. Meyer-klaucke, Mono- and Binuclear Zn2+-??-Lactamase: ROLE OF THE CONSERVED CYSTEINE IN THE CATALYTIC MECHANISM, Journal of Biological Chemistry, vol.274, issue.19, pp.13242-13249, 1999.
DOI : 10.1074/jbc.274.19.13242

S. Melino, C. Capo, B. Dragani, A. Aceto, and R. Petruzzelli, A zinc-binding motif conserved in glyoxalase II, ??-lactamase and arylsulfatases, Trends in Biochemical Sciences, vol.23, issue.10, pp.381-382, 1998.
DOI : 10.1016/S0968-0004(98)01264-X

U. Heinz and H. Adolph, Metallo-?-lactamases: two binding sites for one catalytic metal ion?, Cellular and Molecular Life Sciences, vol.61, issue.22, pp.2827-2839, 2004.
DOI : 10.1007/s00018-004-4214-9

A. Carfi, S. Pares, E. Duee, M. Galleni, and C. Duez, The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold, EMBO J, vol.14, pp.4914-4921, 1995.

N. Concha, B. Rasmussen, K. Bush, and O. Herzberg, Crystal structure of the wide-spectrum binuclear zinc ??-lactamase from Bacteroides fragilis, Structure, vol.4, issue.7, pp.823-836, 1996.
DOI : 10.1016/S0969-2126(96)00089-5

D. De-seny, C. Prosperi-meys, C. Bebrone, G. Rossolini, and M. Page, Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-??-lactamase, Biochemical Journal, vol.363, issue.3, pp.687-696, 2002.
DOI : 10.1042/bj3630687

A. Shimada, H. Ishikawa, N. Nakagawa, S. Kuramitsu, and R. Masui, The first crystal structure of an archaeal metallo-??-lactamase superfamily protein; ST1585 from Sulfolobus tokodaii, Proteins: Structure, Function, and Bioinformatics, vol.221, issue.10, pp.2399-2402, 2010.
DOI : 10.1002/prot.22749