A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.

Abstract : Most conditions detected by expanded newborn screening result from deficiency of one of the enzymes that degrade acyl-coenzyme A (CoA) esters in mitochondria. The role of acyl-CoAs in the pathophysiology of these disorders is poorly understood, in part because CoA esters are intracellular and samples are not generally available from human patients. We created a mouse model of one such condition, deficiency of 3-hydroxy-3-methylglutaryl-CoA lyase (HL), in liver (HLLKO mice). HL catalyses a reaction of ketone body synthesis and of leucine degradation. Chronic HL deficiency and acute crises each produced distinct abnormal liver acyl-CoA patterns, which would not be predictable from levels of urine organic acids and plasma acylcarnitines. In HLLKO hepatocytes, ketogenesis was undetectable. Carboxylation of [2-(14)C] pyruvate diminished following incubation of HLLKO hepatocytes with the leucine metabolite 2-ketoisocaproate (KIC). HLLKO mice also had suppression of the normal hyperglycemic response to a systemic pyruvate load, a measure of gluconeogenesis. Hyperammonemia and hypoglycemia, cardinal features of many inborn errors of acyl-CoA metabolism, occurred spontaneously in some HLLKO mice and were inducible by administering KIC. KIC loading also increased levels of several leucine-related acyl-CoAs and reduced acetyl-CoA levels. Ultrastructurally, hepatocyte mitochondria of KIC-treated HLLKO mice show marked swelling. KIC-induced hyperammonemia improved following administration of carglumate (N-carbamyl-L-glutamic acid), which substitutes for the product of an acetyl-CoA-dependent reaction essential for urea cycle function, demonstrating an acyl-CoA-related mechanism for this complication.
Complete list of metadatas

Cited literature [33 references]  Display  Hide  Download

https://hal-riip.archives-ouvertes.fr/pasteur-01131004
Contributor : Michel Courcelles <>
Submitted on : Thursday, March 12, 2015 - 4:43:03 PM
Last modification on : Thursday, August 22, 2019 - 3:46:22 PM
Long-term archiving on : Saturday, June 13, 2015 - 12:05:12 PM

File

journal.pone.0060581.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

Nicolas Gauthier, Jiang Wei Wu, Shu Pei Wang, Pierre Allard, Orval A Mamer, et al.. A liver-specific defect of Acyl-CoA degradation produces hyperammonemia, hypoglycemia and a distinct hepatic Acyl-CoA pattern.. PLoS ONE, Public Library of Science, 2013, 8 (7), pp.e60581. ⟨10.1371/journal.pone.0060581⟩. ⟨pasteur-01131004⟩

Share

Metrics

Record views

93

Files downloads

248