A Novel Ambisense Densovirus, Acheta domesticus Mini Ambidensovirus, from Crickets.
Hanh T Pham, Qian Yu, Max Bergoin, Peter Tijssen

To cite this version:
Hanh T Pham, Qian Yu, Max Bergoin, Peter Tijssen. A Novel Ambisense Densovirus, Acheta domesticus Mini Ambidensovirus, from Crickets.. Genome Announcements, American Society for Microbiology, 2012, 1 (6), pp.1-5. <10.1128/genomeA.00914-13>. <pasteur-01132108>
The genome structure of *Acheta domestica* mini ambisenso densovirus, isolated from crickets, resembled that of ambisenso densoviruses from *Lepidoptera* but was 20% smaller. It had the highest (<25%) protein sequence identity with the nonstructural protein 1 (NS1) of *Iteravirus* and VP of *Densovirus* members (both with 25% coverage) and smaller (0.2- versus 0.55-kb) Y-shaped inverted terminal repeats.

ITRs of AdMADV were smaller than those of densovirus members (199 versus about 545 nt) and Y-shaped, with a 113-nt hairpin. The 45-nt-long stem contained two side arms in the middle, nt 46 to 68, that occurred in two sequence orientations (flip/flop). It had a high GC content (63%) and contained inboard TATA boxes, at 193 to 199 for the NS cassette and at 4747 to 4753 for the VP cassette. This structure is identical to that of *Densovirus* ITRs.

The NS cassette consisted, as for *Densovirus* members, of NS3, followed by NS1 and an overlapping NS2. Splicing, as for *Densovirus*, would remove the NS3 open reading frame (ORF) and allow expression of NS1 and NS2 by leaking scanning. As for *Densovirus*, the putative splice acceptor site was located just upstream of the initiation codon of NS1 (1172-CAG/aATG_N_S1-N_S2) (in GmDNV, 1395-CAG/ATG_N_S1-N_S2). As for members of the *Densovirus* genus, the VP on the complementary strand also contained the phospholipase A2 motif (4390, 4391) and the stop codons of NS1 and VP were neighbors (2661-TAG/AAT-2666), suggesting a small overlap of their transcripts, as for GmDNV.

Nucleotide sequence accession number. The GenBank accession number of AdMADV is **KF275669**.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada to P.T.; H.T.P. and Q.Y. acknowledge tuition fee waivers at INRS and scholarships from INRS and the People’s Republic of China.

REFERENCES

