P. Tattersall, J. Kerr, S. Cotmore, M. Bloom, M. Linden et al., The evolution of parvovirus taxonomy, pp.5-14, 2006.
DOI : 10.1201/b13393-4

H. Dunne, J. Gobble, J. Hokanson, D. Kradel, and G. Bubash, Porcine reproductive failure associated with a newly identified " SMEDI " group of picorna viruses, Am. J. Vet. Res, vol.26, pp.1284-1297, 1965.

W. Mengeling and R. Cutlip, Reproductive disease experimentally induced by exposing pregnant gilts to porcine parvovirus, Am. J. Vet. Res, vol.37, pp.1393-1400, 1976.

W. Mengeling, Z. Pejsak, and P. Paul, Biological assay of attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus, Am. J. Vet. Res, vol.45, pp.2403-2407, 1984.

R. Cutlip and W. Mengeling, Pathogenesis of in utero infection: experimental infection of eight-and ten-week-old porcine fetuses with porcine parvovirus, Am. J. Vet. Res, vol.36, pp.1751-1754, 1975.

C. Choi, T. Molitor, H. Joo, and R. Gunther, Pathogenicity of a skin isolate of porcine parvovirus in swine fetuses, Veterinary Microbiology, vol.15, issue.1-2, pp.19-290378, 1987.
DOI : 10.1016/0378-1135(87)90125-8

A. Jozwik, J. Manteufel, H. Selbitz, and U. Truyen, Vaccination against porcine parvovirus protects against disease, but does not prevent infection and virus shedding after challenge infection with a heterologous virus strain, Journal of General Virology, vol.90, issue.10, pp.2437-2441, 2009.
DOI : 10.1099/vir.0.012054-0

A. Streck, S. Bonatto, T. Homeier, C. Souza, K. Goncalves et al., High rate of viral evolution in the capsid protein of porcine parvovirus, Journal of General Virology, vol.92, issue.11, pp.2628-2636, 2011.
DOI : 10.1099/vir.0.033662-0

M. Boisvert, S. Fernandes, and P. Tijssen, Multiple Pathways Involved in Porcine Parvovirus Cellular Entry and Trafficking toward the Nucleus, Journal of Virology, vol.84, issue.15, pp.7782-7792, 2010.
DOI : 10.1128/JVI.00479-10

URL : https://hal.archives-ouvertes.fr/pasteur-00819602

B. Venkatakrishnan, J. Yarbrough, J. Domsic, A. Bennett, B. Bothner et al., Structure and Dynamics of Adeno-Associated Virus Serotype 1 VP1-Unique N-Terminal Domain and Its Role in Capsid Trafficking, Journal of Virology, vol.87, issue.9, pp.4974-498402524, 2013.
DOI : 10.1128/JVI.02524-12

G. Farr, S. Cotmore, and P. Tattersall, VP2 Cleavage and the Leucine Ring at the Base of the Fivefold Cylinder Control pH-Dependent Externalization of both the VP1 N Terminus and the Genome of Minute Virus of Mice, Journal of Virology, vol.80, issue.1, 2006.
DOI : 10.1128/JVI.80.1.161-171.2006

C. Sanchez-martinez, E. Grueso, M. Carroll, J. Rommelaere, and J. Almendral, Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry, Virology, vol.432, issue.1, pp.45-56, 2012.
DOI : 10.1016/j.virol.2012.05.025

C. Ros, C. Burckhardt, and C. Kempf, Cytoplasmic Trafficking of Minute Virus of Mice: Low-pH Requirement, Routing to Late Endosomes, and Proteasome Interaction, Journal of Virology, vol.76, issue.24, pp.12634-12645, 2002.
DOI : 10.1128/JVI.76.24.12634-12645.2002

C. Ros, M. Gerber, and C. Kempf, Conformational Changes in the VP1-Unique Region of Native Human Parvovirus B19 Lead to Exposure of Internal Sequences That Play a Role in Virus Neutralization and Infectivity, Journal of Virology, vol.80, issue.24, pp.12017-12024, 2006.
DOI : 10.1128/JVI.01435-06

J. Bergeron, J. Menezes, and P. Tijssen, Genomic Organization and Mapping of Transcription and Translation Products of the NADL-2 Strain of Porcine Parvovirus, Virology, vol.197, issue.1, pp.86-98, 1993.
DOI : 10.1006/viro.1993.1569

Z. Zadori, J. Szelei, M. Lacoste, Y. Li, S. Gariepy et al., A Viral Phospholipase A2 Is Required for Parvovirus Infectivity, Developmental Cell, vol.1, issue.2, pp.291-302, 2001.
DOI : 10.1016/S1534-5807(01)00031-4

S. Canaan, Z. Zadori, F. Ghomashchi, J. Bollinger, M. Sadilek et al., Interfacial Enzymology of Parvovirus Phospholipases A2, Journal of Biological Chemistry, vol.279, issue.15, pp.14502-14508, 2004.
DOI : 10.1074/jbc.M312630200

K. Lux, N. Goerlitz, S. Schlemminger, L. Perabo, D. Goldnau et al., Green Fluorescent Protein-Tagged Adeno-Associated Virus Particles Allow the Study of Cytosolic and Nuclear Trafficking, Journal of Virology, vol.79, issue.18, pp.11776-11787, 2005.
DOI : 10.1128/JVI.79.18.11776-11787.2005

S. Cohen and N. Pante, Pushing the envelope: microinjection of Minute virus of mice into Xenopus oocytes causes damage to the nuclear envelope, Journal of General Virology, vol.86, issue.12, pp.3243-3252, 2005.
DOI : 10.1099/vir.0.80967-0

S. Cohen, A. Marr, P. Garcin, and N. Pante, Nuclear Envelope Disruption Involving Host Caspases Plays a Role in the Parvovirus Replication Cycle, Journal of Virology, vol.85, issue.10, 2011.
DOI : 10.1128/JVI.01999-10

M. Porwal, S. Cohen, K. Snoussi, R. Popa-wagner, F. Anderson et al., Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis, PLoS Pathogens, vol.72, issue.10, 2013.
DOI : 10.1371/journal.ppat.1003671.s010

URL : https://hal.archives-ouvertes.fr/hal-01101277

H. Wu and M. Rossmann, The Canine Parvovirus Empty Capsid Structure, Journal of Molecular Biology, vol.233, issue.2, pp.231-244, 1993.
DOI : 10.1006/jmbi.1993.1502

L. Riolobos, J. Reguera, M. Mateu, and J. Almendral, Nuclear Transport of Trimeric Assembly Intermediates Exerts a Morphogenetic Control on the Icosahedral Parvovirus Capsid, Journal of Molecular Biology, vol.357, issue.3, pp.1026-1038, 2006.
DOI : 10.1016/j.jmb.2006.01.019

S. Cotmore and P. Tattersall, Encapsidation of minute virus of mice DNA: aspects of the translocation mechanism revealed by the structure of partially packaged genomes, Virology, vol.336, issue.1, pp.100-112, 2005.
DOI : 10.1016/j.virol.2005.03.007

G. Tullis, L. Burger, and D. Pintel, The minor capsid protein VP1 of the autonomous parvovirus minute virus of mice is dispensable for encapsidation of progeny single-stranded DNA but is required for infectivity, J. Virol, vol.67, pp.131-141, 1993.

I. Macara, Transport into and out of the Nucleus, Microbiology and Molecular Biology Reviews, vol.65, issue.4, 2001.
DOI : 10.1128/MMBR.65.4.570-594.2001

H. Tschochner and E. Hurt, Pre-ribosomes on the road from the nucleolus to the cytoplasm, Trends in Cell Biology, vol.13, issue.5, pp.255-263, 2003.
DOI : 10.1016/S0962-8924(03)00054-0

K. Krauer, M. Buck, J. Flanagan, D. Belzer, and T. Sculley, Identification of the nuclear localization signals within the Epstein-Barr virus EBNA-6 protein, Journal of General Virology, vol.85, issue.1, pp.165-172, 2004.
DOI : 10.1099/vir.0.19549-0

M. Li, S. Wang, M. Cai, and C. Zheng, Identification of Nuclear and Nucleolar Localization Signals of Pseudorabies Virus (PRV) Early Protein UL54 Reveals that Its Nuclear Targeting Is Required for Efficient Production of PRV, Journal of Virology, vol.85, issue.19, pp.10239-1025105223, 2011.
DOI : 10.1128/JVI.05223-11

W. Mears, V. Lam, and S. Rice, Identification of nuclear and nucleolar localization signals in the herpes simplex virus regulatory protein ICP27, J. Virol, vol.69, pp.935-947, 1995.

J. Grieger, S. Snowdy, and R. Samulski, Separate Basic Region Motifs within the Adeno-Associated Virus Capsid Proteins Are Essential for Infectivity and Assembly, Journal of Virology, vol.80, issue.11, pp.5199-5210, 2006.
DOI : 10.1128/JVI.02723-05

E. Lombardo, J. Ramirez, J. Garcia, and J. Almendral, Complementary Roles of Multiple Nuclear Targeting Signals in the Capsid Proteins of the Parvovirus Minute Virus of Mice during Assembly and Onset of Infection, Journal of Virology, vol.76, issue.14, pp.7049-7059, 2002.
DOI : 10.1128/JVI.76.14.7049-7059.2002

M. Vihinen-ranta, L. Kakkola, A. Kalela, P. Vilja, and M. Vuento, Characterization of a Nuclear Localization Signal of Canine Parvovirus Capsid Proteins, European Journal of Biochemistry, vol.108, issue.2, pp.389-394, 1997.
DOI : 10.1083/jcb.129.3.551

S. Pillet, Z. Annan, S. Fichelson, and F. Morinet, Identification of a nonconventional motif necessary for the nuclear import of the human parvovirus B19 major capsid protein (VP2), Virology, vol.306, issue.1, pp.25-32, 2003.
DOI : 10.1016/S0042-6822(02)00047-8

E. Lombardo, J. Ramirez, M. Agbandje-mckenna, and J. Almendral, A Beta-Stranded Motif Drives Capsid Protein Oligomers of the Parvovirus Minute Virus of Mice into the Nucleus for Viral Assembly, Journal of Virology, vol.74, issue.8, pp.3804-3814, 2000.
DOI : 10.1128/JVI.74.8.3804-3814.2000

Z. Zadori, J. Szelei, and P. Tijssen, SAT: a Late NS Protein of Porcine Parvovirus, Journal of Virology, vol.79, issue.20, pp.13129-13138, 2005.
DOI : 10.1128/JVI.79.20.13129-13138.2005

F. Li, Q. Zhang, Q. Yao, L. Chen, J. Li et al., The DNA replication, virogenesis and infection of canine minute virus in non-permissive and permissive cells, Virus Research, vol.179, pp.147-152, 2014.
DOI : 10.1016/j.virusres.2013.10.019

A. Lange, R. Mills, C. Lange, M. Stewart, S. Devine et al., Classical Nuclear Localization Signals: Definition, Function, and Interaction with Importin ??, Journal of Biological Chemistry, vol.282, issue.8, pp.5101-5105, 2007.
DOI : 10.1074/jbc.R600026200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502416

R. Perez, M. Castellanos, A. Rodriguez-huete, and M. Mateu, Molecular Determinants of Self-Association and Rearrangement of a Trimeric Intermediate during the Assembly of a Parvovirus Capsid, Journal of Molecular Biology, vol.413, issue.1, pp.32-40, 2011.
DOI : 10.1016/j.jmb.2011.08.020