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Abstract. Dysregulation of galectin expression is frequently 
observed in cancer tissues. Such an abnormal expression 
pattern often correlates with aggressiveness and relapse in 
many types of cancer. Because galectins have the ability to 
modulate functions that are important for cell survival, migra-
tion and metastasis, they also represent attractive targets for 
cancer therapy. This has been well-exploited for extracellular 
galectins, which bind glycoconjugates expressed on the 
surface of cancer cells. Although the existence of intracel-
lular functions of galectins has been known for many years, 
an increasing number of studies indicate that these proteins 
can also alter tumor progression through their interaction 
with intracellular ligands. In fact, in some instances, the 
interactions of galectins with their intracellular ligands seem 
to occur independently of their carbohydrate recognition 
domain. Such findings call for a change in the basic assump-
tions, or paradigms, concerning the activity of galectins in 
cancer and may force us to revisit our strategies to develop 
galectin antagonists for the treatment of cancer.
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1. Introduction

Galectins represent a family of evolutionarily conserved 
animal lectins that are widely distributed from lower inver-
tebrates to higher vertebrates. They were initially described 

in the electric eel, Electrophorus electricus, as low molecular 
weight, β-galactoside binding proteins (1). Since then, galectins 
have been numbered according to the order of their discovery. 
The 15 family members are now classified according to their 
structure and number of carbohydrate recognition domain 
(CRD). The prototype subfamily of galectins (galectin-1, 
-2, -5, -7, -10, -11, -13, -14 and -15) consists of a single CRD 
with a short N-terminal sequence. The tandem-repeat type 
subfamily (galectin-4, -6, -8, -9 and -12) has two non-identical 
CRDs joined by a short linker peptide sequence. There is also 
a chimerical form of galectin (galectin-3) that contains one 
CRD connected to a non-lectin domain.

One of the first clues that galectins were involved in 
cancer was published more than 25 years ago when it was 
observed that they were differently regulated in normal and 
cancer tissues. Since then, a large number of studies have 
focused on the role of galectins in cancer and excellent 
reviews on the role of galectins have been published (2-5). 
Historically, studies on the role of galectins in cancer have 
mostly focused on their ability to bind membrane-anchored 
cell surface receptors via their CRD. Their dimeric form (or 
multimeric in the case of galectin-3) induces crosslinking 
of the receptors and formation of a lattice that triggers a 
cascade of transmembrane signaling events. For example, 
binding of galectin-3 protects EGF and TGF-β receptors 
from negative regulation via constitutive endocytosis and 
increases sensitivity of tumor cells to growth factors (6). 
Binding to cell surface receptors can also induce apoptosis. 
This is particularly relevant in the case of galectin-1, which 
is capable of inducing apoptosis of T-cells and potentially 
create an immunosuppressive tumor microenvironment (7). 
Alternatively, binding to cell surface receptors can facilitate 
intercellular adhesion (to promote homo- and heterotypic 
aggregation) or adhesion of tumor cells to extracellular 
matrix proteins. Exhaustive efforts have thus been deployed 
for the identification of highly selective and potent galectin 
inhibitors. Despite decades of research, the progression 
in this field has been relatively slow. In most cases, these 
inhibitors are peptides or high molecular weight, naturally 
occurring polysaccharides that are used to specifically block 
the binding of extracellular galectins to carbohydrate struc-
tures on cell surface receptors. While targeting extracellular 
galectins is warranted, such inhibitors are largely if not 
completely ineffective at targeting intracellular galectins. 
Indeed, most galectins preferentially exist in intracellular 
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compartments, consistent with the fact that they do not 
harbor a signal sequence and are transported outside the 
cells via a non-classical secretory pathway, possibly via 
galectin-rich vesicles or exosomes. A better understanding 
of their intracellular functions in cancer cells is thus critical 
to help develop new anticancer therapies directed at these 
proteins.

2. Where do we find galectins inside the cells?

The answer to this question is rather simple: almost anywhere 
(Fig. 1). They can be detected in various intracellular 
compartments of both normal and cancerous cells. Frequently, 
modifications in the subcellular localization occur when cells 
undergo cell-transformation into malignant phenotypes (4). 
It is noteworthy to mention that galectins expression is also 
modulated during some of these cell transformation processes, 
hence their presence/absence in those subcellular localiza-
tions is not exclusive to protein translocation (8). Up to now, 
however, our knowledge of intracellular galectins has mostly 
been obtained while studying galectin-3. As we gain more and 
more knowledge on other members of the galectin family, we 
find overwhelming evidence that most if not all galectins are 
often expressed inside the cells. Here we describe the intra-
cellular localization of various galectins with their respective 
cancer tissues and/or cell lines (Table I).

Galectin-1 is observed in the nuclear compartment of 
transfected HeLa cells (9) and the inner plasma membrane of 
colorectal adenocarcinoma cells (HCT116) (10). Moreover, 
its presence is also seen in the cytosol of neuroblastoma 
and small cell lung carcinoma tissues, testicular interstitial 
and cervical carcinoma cell lines (MA-10 and HeLa), hypo-
pharyngeal (HSCCs) and laryngeal (LSCCs) squamous cell 
carcinoma tissues, human melanoma cell lines (A375 and 
A2058) and colorectal cancer tissues including adenomas, 
carcinomas and metastases from patients (9,11-15). Although 
fewer studies have been conducted on galectin-2, the avail-
able data indicate its presence in the nucleus of genetically 
engineered human colon cancer cells that have ectopic stable 
expression (16) in addition to gastric carcinoma tissues, 
epidermoid carcinoma, osteosarcoma and glioblastoma cell 
lines (A-431, U-2 OS and U-251MG) (17,18). Its presence 
has also been reported in the cytosol of gastric carcinoma 
tissues and in mitochondria of epidermoid carcinoma, osteo-
sarcoma and glioblastoma cell lines (A-431, U-2 OS and 
U-251MG) (17,18). In the case of galectin-3, one of the most 
investigated members of the galectin family, its presence is 
detected in the nucleus of aggressive endometrial adenocar-
cinoma, melanoma cell lines, malignant thyroid carcinomas 
(follicular adenoma, Hürthle cell adenoma and papillary 
carcinoma) (19-21). Galectin-3 is also found in the cytosol 
of colonic adenomas/carcinomas tissues, follicular/papillary 
thyroid carcinomas, endometrial adenocarcinoma, human 
melanoma cell lines (MlDo and M4Be), malignant thyroid 
carcinoma (follicular adenoma, Hürthle cell adenoma and 
papillary carcinoma) and in tongue squamous cell carcinoma 
tissues (19-24). Additionally, galectin-3 is found in the mito-
chondria of colorectal adenocarcinoma cell line (SNU-769B), 
in endosomal compartments of breast adenocarcinoma cell 
line (SKBR3), and in apical membrane regions of human 

colon adenocarcinoma cell lines (T84 and HCT116) (10,25-
27). Galectin-4 is detected in the cytosol of human breast 
ductal carcinoma tissues (28,29) and pancreatic adenocar-
cinoma cell line (Pa-Tu-8988S) (29) as well as inside the 
basal plasma membrane of human colon adenocarcinoma 
cells (T84) (27). Galectin-7, which has recently attracted 
more interest in cancer because its preferential expression 
in epithelial tissues and carcinomas, is seen in the nucleus 
of many cancer cells, including hypopharyngeal (HSCCs) 
and laryngeal (LSCCs) squamous cell carcinomas tissues, 
colon carcinoma cells (DLD-1), cervical adenocarcinoma 
(HeLa), epithelial ovarian cancer tissues and oral epithelial 
dysplasia tissues (13,30-32). Galectin-7 is also observed in 
the cytosol of the colon carcinoma cell line DLD-1, cervical 
adenocarcinoma cells (HeLa), epithelial ovarian cancer and 
oral epithelial dysplasia tissues (17,30-32). Like galectin-3, 
it is also detected in mitochondrial fractions, most notably 
in the case of human colorectal carcinoma and cervical 
adenocarcinoma cell lines (HCT116, HeLa) and the HaCaT 
keratinocyte cell line (33). Galectin-8 expression is detected 
in the cytosol, nucleus and mitochondria of tumor-associated 
epithelial cells from human prostate and breast tissues (34). 
Intracellular galectin-9 is observed in the cytosol of human 
melanoma cell lines (MM-BP and MM-RU) and the MCF-7 
breast carcinoma cell line (35,36). Galectin-10 is observed 
in the nuclei and cytosol of epidermoid carcinoma cells and 
in the cytoplasmic compartments of glioblastoma and osteo-
sarcoma. In the human promyelocytic leukemia HL-60 cell 
line, it is found in the nucleus, cytosol and mitochondria (37) 
while its localization is associated with the inner plasma 
membrane of many glioblastoma cell lines (A-431, U-2 OS 
and U-251MG) (17). Galectin-12 is observed in the cytosol 
and mitochondria of osteosarcoma and glioblastoma cell 
lines (U-2 OS and U-251MG) (17).

Although there are no reports yet that other galectins are 
present inside cancer cells, there are indications that this may 
well be the case given their presence inside normal cells. For 
example, galectin-12, a close structural homolog of galectin-7, 
has been found in the nucleus and mitochondrial fractions 
of adipocytes (38-40). The fact that galectin-12-deficient 
mice have abnormal mitochondrial activity is particularly 
interesting considering the key role of mitochondria in energy 
metabolism of cancer cells (41,42). Galectin-10 is also found 
inside human regulatory T-cells and other inflammatory 
cells (43) while galectin-13 is found in the perinuclear area of 
syncytiotrophoblasts (44). Computational predictions of where 
galectins resides in a cell show that it is logical to assume that 
many galectins will be present within several intracellular 
compartments. For example, using pSORT, a commonly used 
tool to predict intracellular localization of proteins, we found 
that all galectins have a strong preference for cytoplasmic, 
nuclear and mitochondrial compartments (Table II) (45,46). 
We have obtained similar results using other computational 
tools (unpublished data).

3. Intracellular functions of galectins in cancer

The main challenge in studying the galectin functions in 
neoplasms remains their opposing functions in tumor 
progression. Depending on the type of cancer, one galectin 
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Table I. Intracellular localization of galectins in different cancers.

Localization Galectin Cancer cell line/tissue from patients (Refs.)

Nuclear Galectin-1 Cervical adenocarcinoma (9)
 Galectin-2 Colorectal carcinoma (16)
  Epidermoid carcinoma, osteosarcoma and glioblastoma (17)
  Gastric carcinoma (18)
 Galectin-3 Adenocarcinoma of the endometrium (19)
  Melanoma (20)
  Thyroid carcinoma (follicular/Hürthle cell/papillary) (21)
 Galectin-7 Hypopharyngeal/laryngeal squamous cell carcinoma (13)
  Colorectal carcinoma and cervical adenocarcinoma (30)
  Epithelial ovarian cancer (31)
  Oral epithelial dysplasia (32)
 Galectin-8 Tumor-associated epithelial cells from prostate and breast carcinoma (34)
 Galectin-10 Epidermoid carcinoma (17)
  Human promyelocytic leukemia (HL-60) (37)
Cytoplasmic Galectin-1 Cervical adenocarcinoma (9)
  Neuroblastoma and small cell lung carcinoma (11)
  Testicular (interstitial cell) carcinoma (12)
  Hypopharyngeal/laryngeal squamous cell carcinoma (13)
  Melanoma (14)
  Colorectal carcinoma (15)
 Galectin-2 Gastric carcinoma (18)
 Galectin-3 Colorectal adenoma and carcinoma (22)
  Follicular and papillary thyroid carcinoma (23)
  Adenocarcinoma of the endometrium (19)
  Melanoma (20)
  Thyroid carcinoma (follicular/ Hürthle cell/papillary) (21)
  Squamous cell carcinoma of the tongue (24)
 Galectin-4 Ductal breast carcinoma (28)
  Pancreatic adenocarcinoma (29)
 Galectin-7 Colon carcinoma and cervical adenocarcinoma (30)
  Epithelial ovarian cancer (31)
  Epidermoid carcinoma and osteosarcoma (17)
  Oral epithelial dysplasia (32)
 Galectin-8 Tumor-associated epithelial cell from prostate and breast carcinoma (34)
 Galectin-9 Melanoma (35)
  Breast carcinoma (36)
 Galectin-10 Epidermoid carcinoma and glioblastoma (17)
  Human promyelocytic leukemia (HL-60) (37)
 Galectin-12 Osteosarcoma and glioblastoma (17)
Mitochondrial Galectin-2 Epidermoid carcinoma, osteosarcoma and glioblastoma (17)
 Galectin-3 Colorectal adenocarcinoma  (25)
 Galectin-7 Colorectal carcinoma and cervical adenocarcinoma (33)
 Galectin-8 Tumor-associated epithelial cell from prostate and breast carcinoma (34)
 Galectin-10 Human promyelocytic leukemia (HL-60) (37)
 Galectin-12 Osteosarcoma and glioblastoma (17)
Endosomal Galectin-3 Breast adenocarcinoma (26)
compartments
Plasma Galectin-1 Colorectal adenocarcinoma (10)
membrane Galectin-3 Colorectal adenocarcinoma (10,27)
 Galectin-4 Colorectal adenocarcinoma (27)
 Galectin-10 Epidermoid carcinoma, osteosarcoma and glioblastoma (17)
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Figure 1. Pro- and anti-tumoral functions of galectins in cancer. Galectins are found in the cytoplasm (C), mitochondria (M), nucleus (N), endosomal compart-
ments (EC) and inner plasma membrane (PM). They are capable of modulating many aspects of tumor progression such as cell adhesion and migration, immune 
escape, cell transformation, apoptosis, angiogenesis, tumor growth, invasion and metastasis.

Figure 2. Intracellular binding partners of various galectins. Galectins have numerous binding partners with respect to their inner compartmentalization.
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can either have pro/antitumoral properties (5,47,48) (Fig. 1). 
This characteristic of galectins can be explained by the large 
diversity of binding partners (Fig. 2) and by the expression 
pattern of these partners, which varies contingent to the 
cell type. Another proposed hypothesis supporting the dual 
functionalities of galectins in cancer is based on the distinct 
compartmentalization of the proteins within the cells. In 
fact, it was shown that intracellular localization of galectins 
differs according to the cell type and tumor progression 
stage. Supporting this hypothesis, Califice et al (47) demon-
strated that overexpression of galectin-3 in LnCap prostate 
cancer cells in the cytoplasm induces invasion behavior, 
anchorage-independant growth, tumor growth and angio-
genesis and reduces apoptosis, while nuclear overexpression 
results in the opposite biological activities. Hence, it is of great 
interest to take a closer look at the intracellular localization of 
these galectins and the impact it has on their biological func-
tions with regards to cancer progression. Here, we discuss the 
main findings on the possible roles of intracellular galectins in 
cancer. A detailed report of their functions and their putative 
ligands is found in Tables III and IV.

Cell transformation. A positive correlation between the 
expression of galectin-1 and -3 and malignant transformation 
has been established using different cellular models (49-51). 
Although the mechanisms involved are not completely clear, it 
potentially involves interactions with membrane-bound H-Ras 
and K-Ras (52-54). Interestingly, Ras-transformed NIH-3T3 
cells have increased expression of galectin-1 and galectin-3 
compared to control cells (55). This induction is not necessarily 
a consequence of Ras pathway activation but rather a secondary 
effect of cell transformation. Hebert et al demonstrated that 
Ras transfected cells that have a transformed phenotype, 
express galectin-3 while Ras transfected cells that have not 
achieved cell transformation do not (56). Another possibility 
for galectin-induced malignant transformation might be via 
their association with the spliceosome. Indeed, galectin-1 and 
-3 are found in Gemin4 (C50)/SMN/Gemin2 complex and play 
an important role in spliceosome assembly (57). This associa-
tion suggests that those galectins might regulate the processing 
of pre-mRNA during malignant transformation.

Apoptosis. Apoptosis regulation by galectins is probably one 
of their most studied intracellular functions. Several studies 
have shown that galectins either positively or negatively regu-
late apoptosis in various cancer cell models. Galectin-1 for 
example, increases apoptosis of LnCap prostate cancer cells, 
CoLo201 colon cancer cells, Leydig tumor cells and B-cell 
lymphomas (12,58-61). Conversely, it reduces apoptosis in 
gliomas, cervical and lung cancer (62-64). Galectin-3 has 
also been shown to modulate apoptosis. In myeloid leukemia, 
neuroblastoma, colorectal, breast, prostate, thyroid, bladder, 
pancreatic, gastric and some B-cell lymphoma cancer cells it 
has been shown to have anti-apoptotic functions (47,65-80). 
In contrast, it seems to induce apoptosis in other B-cell 
lymphomas (81). Galectin-7 displays a dual functionality 
in apoptosis as well since it reduces chemosensitivity in 
melanomas, breast and lymphoid cancer cells, yet it sensi-
tizes colon, urothelial and cervical cancer cells to cell death 
(82-87). This role of galectin-7 in melanoma cells is clearly 
distinct from that of galecin-9 which rather promotes death of 
melanoma cells (35,88).

The underlying mechanisms of galectin's regulation of 
apoptosis are not fully understood. Nonetheless, many binding 
partners implicated in cell fate have been identified. Galectin-3 
and -7 have been shown to interact in vitro and in vivo with the 
anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (33,89,90). 
The domain of galectin-7 protein implicated in this binding 
has not yet been identified. Still, the NWGR motif present at 
the N-terminus of galectin-3 protein shows a strong homology 
with the BH1 motif of Bcl-2, which appears to be essential 
for its anti-apoptotic functions (90). Due to a strong homology 
between the different pro- and anti-apoptotic members of the 
Bcl-2 family, galectins might also be able to interact with other 
members of the family. The modulation of either their stability 
or their localization would explain the dual role of galectins 
in apoptosis. The members of the Bcl-2 family are probably 
not the only galectin-binding partners implicated in apoptosis 
regulation. Synexin, a calcium and phospholipid-binding 
protein has been shown to drive the perinuclear transloca-
tion of galectin-3, which is essential to its anti-apoptotic 
function (91). Galectin-3 also interacts with the intracellular 
domain of the CD95 receptor, also known as FAS receptor 

Table II. Predicted intracellular localization of galectins.

 Galectin (%)
Cellular ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
compartment 1 2 3 4 7 8 9 10 12 13

Cytoplasmic 65 52 26 65 65 70 65 52 39 61
Nuclear 22 26 48 17 17 17 17 13 13 17
Mitochondrial   4   9   9 13 17   9   4 4.3 44 13
ER   4 - - - -   4   4 - -   4
VSS   4 - -   4 - -   4 - - -
Vacuolar -   4 - - - - - - -   4
Cytoskeletal -   4 - - - - - 22 4.3 -
Peroxisomal -   4 - - - - -   9 - -

ER, endoplasmic reticulum; VSS, vesicles of secretory system.
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Table III. Intracellular functions of galectins in different cancers.

Galectin Cancer type Effect (Refs.)

Galectin-1 Thyroid Expression associated with malignant transformation (50,157)
 Prostate Increases adhesion, reduces growth rate and (58,108,141,158,159)
  induces apoptosis of LnCaP cells, provoque tumor
  immune evasion and increases tumor vascularization.
  Stimulate heterotypic cell-cell adhesion
 Breast Induces angiogenesis, tumor immune evasion and progression (138,140,160,161)
 Colorectal Associated with malignant progression, reduces cell migration (59,110,162)
  and induces cell adhesion to ECM and
  apoptosis of Colo201 cells
 Cervical Induces radioresistance, proliferation and invasion (62,115)
 Lung Promote chemoresistance, migration and invasion (63,109)
 Ovarian Increases proliferation and invasion (64)
 Gliomas Increases cell growth, invasion, angiogenesis and (51,112,113,137,163-165)
  chemotherapy resistance
 B-cell lymphoma Decreases viability and cell growth (60,61)
 Melanoma Induces cell aggregation (166)
 Neuroblastoma Reduces cell growth, induces immunoevasion (93,142)
 Leydig tumor cells Regulates positively or negatively cell proliferation (12)
  and apoptosis
 Hepatic Increases migration and invasion (111)
 Pancreas Promotes proliferation, invasion and immune evasion (114,142)
Galectin-2 Breast Increases adhesion (116)
 Colon Increases adhesion (116)
Galectin-3 Colorectal Increases metastasis formation, reduces apoptosis and (65,66,125,143,167)
  induces tumor immune evasion
 Breast Induces cell cycle arrest in response to anoikis, increases (67,68,98,168-170)
  adhesion, tumor growth and protects from apoptosis
 Prostate Induces chemoresistance, cell proliferation, angiogenesis, (47,69,120,126,171)
  migration and invasion
 Thyroid Promotes anchorage-independent growth and motility, (70-72,172-174)
  regulate cell cycle and cell transformation,
  promotes chemoresistance
 Liver Promotes metastasis formation (124)
 Lung Increases adhesion, motility, invasion and (117)
  tumor immune evasion
 B-cell lymphoma Increases resistance to fas-induced apoptosis, (73,81,175,176)
  chemoresistance or induces apoptosis
 Myeloid leukemia Reduces chemosensitivity (74,75)
 Gliomas Decreases cell motility and adhesion (121)
 Melanoma Increases metastasis formation, tumor immune evasion (122,123,139,177,178)
  and angiogenesis
 Bladder Protects cells against TRAIL-induces apoptosis (76)
 Ovarian Reduces cell proliferation and increases apoptosis resistance  (179,180)
 Pancreas Increases invasion and proliferation, reduces chemosensitivity (94,95,181,182)
 Gastric Increses cell motility and chemoresistance (78,118,119)
 Tongue Increases cell proliferation, migration and invasion (96,97)
 Neuroblastoma Reduces apoptosis (79)
 Renal Reduces chemosensitivity (80)
Galectin-4 Colorectal Promotes adhesion, reduces cell migration and motility, (100,101,183)
  induces cell cycle arrest
 Pancreas Reduces migration and metastasis formation (29)
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(FasR) or apoptosis antigen 1 (APO-1 or APT), leading to 
opposing apoptogenic mitochondrial activity (92).

Proliferation. Given their role in apoptosis, it is not surprising 
that galectins play a central role in the control of cell prolif-
eration in tumors. This has been well documented in the 
case of galectin-1, which reduces proliferation of B-cell 
lymphomas, neuroblastoma and LnCap prostate cancer cells 
while it increases cell division of glioma, cervical, ovarian 
and pancreatic cancer cells (12,51,58,61,62,64,93). A similar 
case exists for galectin-3, which displays, once more dual 
functionalities in cell proliferation. For instance, galectin-3 
increases proliferation of breast, prostate, pancreatic and 
tongue tumors (47,94-98). This might be due to the interac-
tion of galectin-3 with the APC/Axin/β-catenin complex in 
the nucleus. This interaction increases the transcriptional 
activity of Tcf-4 transcription factor and subsequently 
elevates c-myc and cyclin D1 expression (99). In contrast, 
cytoplasmic galectin-3, along with galectin-1, bind to proto-
cadherin-24, allowing cytoplasmic localization of β-catenin, 
while decreasing Wnt signaling (10). Ectopic expression of 
galectin-4 has also been shown to induce cell cycle arrest 
and to reduce cell migration/motility while sensitizing cells 
to camptothecin-induced apoptosis in colorectal cancer 
(100,101). The data from Satelli et al (101) suggest that 
galectin-4 induces downregulation of β-catenin, Dvl2, TCF1, 
TCF4, c-Myc, LRP6 and cyclin D1 expression levels while 
upregulating p21, p15 Naked 1 and Ephrin B1 (101,102). An 
interaction between galectin-4 and APC/Axin/β-catenin is 

also observed that possibly restricts the translocation of the 
complex to the nucleus. This results in a downregulation of 
Wnt signaling and a decrease in proliferative potential of 
colon cancer cells. In contrast, galectin-7 seems to exhibit 
an increased proliferative activity in ovarian cancer cells, 
whereas it reduces the proliferation rate of neuroblastomas, 
colon and gastric cancer cells (31,103,104). Galectin-8 and -9 
have been shown to reduce colon and myelomas tumor growth, 
respectively (105,106). Galectin-12, for its part, reduces the 
proliferation of T-leukemia and cervical cancer cells (107). 
Such contradictory roles for galectins in cell proliferation 
suggest that extreme precaution must be taken in order to 
target intracellular galectins in cancer.

Adhesion, migration and invasion. The metastatic behavior 
of cancer cells is initiated by dysregulation in cell adhesion, 
migration and invasion abilities. Alterations of interactions 
between extracellular transmembrane receptors and galectins 
are often seen in malignancies and late stages of carcinomas. 
For instance, galectin-1 increases adhesion of colorectal and 
prostate cancer cells (59,108) and stimulates migration of 
hepatic and lung cancer cells, while reducing colorectal cell 
migration (63,109-111). It also increases the invasive behavior 
of gliomas, lung, ovarian, hepatic, pancreatic and cervical 
cancer cells (51,63,64,109,111-115). The ability of galectins to 
increase adhesion and migration has been well documented 
in the case of galectin-2 and most notably in the case of 
galectin-3 (47,67,97,116-120). Specifically, galectin-3 reduces 
glioma cell migration (121). In general, however, galectin-3 

Table III. Continued.

Galectin Cancer type Effect (Refs.)

Galectin-7 Breast Increases invasion, reduces chemosensitivity (82)
 Lymphoma Increases metastasis formation (127-129)
 Ovarian Increases cell proliferation (31)
 Neuroblastoma Reduces cell growth (104)
 Colon Increases chemosensitivity and reduces cell growth, (83)
  anchorage-independent cell growth and angiogenesis
 Urothelial Increases chemosensitivity (85)
 Cervical Increases invasive behavior in vitro, reduces invasion and (86,87,130)
  chemoresistance
 Melanoma Increases chemoresistance (84)
 Gastric Reduces cell proliferation, migration and invasion (103)
Galectin-8 Glioblastoma Stimulates cell migration (131)
 Colon Reduces tumor growth and cell migration (106)
Galectin-9 Melanoma Induces cell aggregation and apoptosis (35,88,136)
 Breast Increases cell aggregation and reduces adhesion (36)
 Oral Increases adhesion (132,133)
 Colon Increases adhesion in vitro but reduces metastasis (134-136)
  formation in vivo
 Myeloma Reduces cell growth and induces apoptosis (105,184)
Galectin-12 Cervical Reduces cell growth (107)
 T-cell leukemia Reduces cell growth (107)
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is mostly associated with increased invasive behavior in 
most cancer cell types tested (94,95,117,122-126), supporting 
the view that targeting this galectin might be a promising 
avenue for the treatment of many types of cancer. Whether 
this is also true for other galectins has to be determined. On 
the contrary, galectin-4 was found to promote adhesion of 
colorectal cells and to reduce migration and metastasis forma-
tion of colorectal and pancreatic cancer cells (29). Further, 

conflicting functionalities are once again displayed in the 
case of galectin-7 dependent on the cell type. Particularly, 
galectin-7 reduces migration of gastric cancer cells and inva-
sion of urothelial and gastric cancer cells (85,103) while it is 
associated with increased invasion of other types of cancer, 
including breast cancer and T-cell lymphoma (82,127-130). 
Galectin-8 also seems to have different abilities to modulate 
migration, most notably in glioblastoma and colon cancer 

Table IV. Intracellular ligands of galectins.

  CRD/non-CRD
Galectin Binding partners binding Effect (Refs.)

Galectin-1 H-Ras  Increased membrane anchorage of Ras (52)
   and GTP bound state resulting in cell
   transformation
 Gemin4 (C50)/SMN/  Supply functional snRNPs to the H/E complex (57)
 Gemin2 complex  in the pathway of spliceosome assembly
 Protocadherin-24  Localization of β-catenin to the cell membrane (10)
   resulting in decreased Wnt signaling
 Monomeric actin CRD Polymerization-depolymerization of actin (185,186)
   in platelet aggregation
Galectin-3 ATP synthase  Inhibition of ATP synthase activity and (25)
   cell cycle progression to G0/G1 phase
 Protocadherin-24  Localization β-catenin to the cell membrane (10)
   resulting in decreased Wnt signaling
 CD95 (APO-1/Fas) Non-CRD Induction of apoptogenic activity (92)
   at the mitochondria
 Nucling  Increase sensitivity to apoptosis (187)
 Synexin  Decrease sensitivity to apoptosis (91)
 CBP70 CRD ND (188)
 β-catenin/TCF NH2 and Induction of transcriptional activity of Tcf-4 with (99)
 complex COOH termini an increase in c-Myc + cyclin D1 expression
 Axin/β-catenin/APC Consensus Promotion GSK-3β-dependent phosphorylation (147)
  sequence of galectin-3/β-catenin resulting in a decrease
  (S92XXXS96) in Wnt signaling
 TTF-1  Upregulation of transcriptional activity of TTF-1 (189)
   contributing to cellular proliferation
 K-Ras  Increase Raf-1/PI3K signaling and attenuated (53,54)
   ERK signaling
 Bcl-2 Non-CRD Apoptosis-suppressing activity and increase (89,90)
  (NWGR motif) mitochondrial integrity and decrease
   caspase activation
 Alix/AIP-1  Facilitation of pro-apoptotic signaling (190-192)
   (Ca2+ dependent)
 Gemin4 (C50)/SMN/  Supply functional snRNPs to the H/E complex (57)
 Gemin2 complex  in the pathway of spliceosome assembly
 Chrp CRD ND (193,194)
Galectin-4 β-catenin/APC/Axin  Increase Naked 1 which destabilizes Dsh/Dvl (101,102)
   proteins resulting in a decreased Wnt signaling
Galectin-7 Bcl-2  Sensitize mitochondria to apoptosis signals (33)
 Smad 3  Decrease expression of TGF-β responsive genes (195)
   resulting in an anti-fibrotic effect on liver tissue
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cells (106,131). A similar scenario exists for galectin-9, which 
increases adhesion of melanoma, oral and colon cancer cells, 
but reduces adhesion of melanoma and breast cancer cells 
and metastasis formation of colon cancer cells (35,36,132-
136). How galectin positively or negatively modulates the 
invasive behavior of cancer cells remains largely unknown. 
There are some indications that galectins may increase the 
secretion of extracellular proteases, remarkably in the case of 
galectin-7, which induces the upregulation of matrix metallo-
proteinase-9 (MMP-9) gene expression, possibly through the 
p38 mitogenic-activated protein kinase (MAPK) (128,130). 
Unlike apoptosis, however, the identification of the intracel-
lular binding partners that are involved in the modulation of 
the invasive behavior of cancer cells remains unknown. In 
contrast, extracellular galectins and their respective binding 
partners have been fairly well characterized.

Other functions of galectins. Angiogenesis is also among 
the functions associated with galectin activity. For example, 
galectin-1 increases glioma, prostate and breast tumor 
vascularisation (108,137,138). Galectin-3 also increases vascu-
larisation of prostate tumors and melanomas, while galectin-7 
reduces angiogenesis of colon tumors (47,83,139). Galectins 
have been shown to take part in the tumor immune escape. 
Indeed, galectin-1 promotes immunoevasion of neuroblas-
toma, prostate, breast and pancreatic cancer cells (140-142). 
Galectin-3 also increases tumor immune escape of melanomas, 
colorectal and lung cancer cells (117,123,143). Most studies 
suggest that extracellular galectins are responsible for these 
functions. The involvement of intracellular galectins in these 
processes remains unknown.

4. CRD-independent functions for intracellular galectins?

Galectins are primarily known for their ability to bind 
to glycans containing lactose or N-aceyllactosamine via 
Van der Walls interactions between the carbohydrate and 
binding pocket. They have a relatively broad specificity 
depending on the type and the length of the carbohydrate and 
the mode of presentation of ligand to the CRD. It is thus logical 
to assume that inside the cells, they will also preferentially 
bind to intracellular glycoconjugates, which are abundantly 
found in the cytosol. There is compelling evidence, however, 
that galectins might have non-carbohydrate binding partners 
and functions. CRD-independent functions have been particu-
larly well documented for intracellular galectins (144-146). 
For example, galectins do interact with Bcl-2 family members 
via a CRD-independent interaction (33,85,89,90). This 
galectin/Bcl-2 interaction is important since the balance of 
activity between pro- and anti-apoptotic signals of members of 
the Bcl-2 family regulates apoptosis. Other CRD-independent 
functions of galectins include RNA processing in the nucleus 
(57) and regulation of cell cycle progression (Wnt signaling?) 
(25,99,101,102,147). All these galectin functions are inde-
pendent of their saccharidic binding activities and rather 
rely on protein-protein interactions. Some galectins, such 
as galectin-10, harbor very low affinity for galactosides and 
are believed to act mainly through other specificities, while 
their CRD binding activity remains debated (148,149). These 
CRD-independent functions represent a paradigm shift in our 

understanding of galectin function and the development of 
galectin-specific antagonists.

A new challenge: studying the redundancy of galectin func-
tions. The existence of redundant or antagonistic functions 
between galectins is a major concern because these proteins 
can converge under normal or pathological conditions. The 
cross-talk between intracellular galectins remains completely 
unknown although cells often express more than one intracel-
lular galectin. For example, MCF-7 breast cancer cells express 
galectin-3, -8 and -9 (150). MCF-10 and MDA-MB-468, two 
other human mammary epithelial cell lines, express both 
galectin-3 and -7, but not galectin-8 or -9 (151,152). Moreover, 
many galectins could be present within the same intracellular 
compartments. A case in point is the mitochondria, where both 
galectin-3 and -7 are found. Galectin-12 can also be present in 
mitochondria and not surprisingly, it seems to be involved in 
the control of cellular metabolism (38-40). Whether galectins 
have redundant or opposed functions in the mitochondria 
is an interesting question given the critical role of cellular 
metabolism in cancer. A better understanding of the functional 
redundancy among homologous proteins, which is frequently 
observed in eukaryotes, is also critical. Such redundancy often 
occurs in order to increase maintenance of important gene 
function and to limit losses following mutations/deletions of 
specific genes (functional compensation). Lessons learned 
from such studies could also bring important insight into 
many others fields, from understanding pathologies to general 
developmental biology.

Future directions. Because of their critical role in cancer, 
considerable efforts have been directed towards the devel-
opment of carbohydrate-based inhibitors that would limit 
the binding of galectins to glycosylated residues on cell 
surface receptors. For example, GCS-100 is a galectin-3 
antagonist with a modified citrus pectin carbohydrate that 
has been shown to inhibit tumor growth and metastasis in 
several preclinical models (153-155). Others, like OTX008, 
a galectin-1 antagonist, act as allosteric CRD-dependent 
inhibitors following binding to a site distant from the carbo-
hydrate-binding site (156). Nevertheless, despite almost two 
decades of research, the development of effective galectin 
antagonists for the treatment of cancer has met with limited 
success. The emerging evidence that galectins have critical 
intracellular and CRD-independent functions calls for a refo-
cusing of our efforts on development of new galectin-specific 
antagonists to modulate apoptosis. Our knowledge of the 
subcellular localization of galectins will also significantly 
improve target identification during the drug discovery 
process. It is thus imperative to better understand the role of 
intracellular galectins and to provide novel insight  into how 
galectins collaboratively modulate cancer progression from 
within the cells.
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