T. Ibrahim, L. Mercatali, and D. Amadori, A new emergency in oncology: Bone metastases in breast cancer patients (Review), Oncology Letters, vol.6, pp.306-310, 2013.
DOI : 10.3892/ol.2013.1372

M. Ravnan, Metastatic breast cancer: a review of current and novel pharmacotherapy, Formulary, vol.46, pp.130-146, 2011.

G. Gupta and J. Massague, Cancer Metastasis: Building a Framework, Cell, vol.127, issue.4, pp.679-695, 2006.
DOI : 10.1016/j.cell.2006.11.001

URL : http://doi.org/10.1016/j.cell.2006.11.001

D. Nguyen, P. Bos, and J. Massague, Metastasis: from dissemination to organ-specific colonization, Nature Reviews Cancer, vol.100, issue.4, pp.274-284, 2009.
DOI : 10.1038/nrc2622

K. Hsiao, N. Shih, H. Fang, T. Huang, C. Kuo et al., Surface ??-Enolase Promotes Extracellular Matrix Degradation and Tumor Metastasis and Represents a New Therapeutic Target, PLoS ONE, vol.17, issue.7, p.69354, 2013.
DOI : 10.1371/journal.pone.0069354.s005

T. Klein and R. Bischoff, Physiology and pathophysiology of matrix metalloproteases, Amino Acids, vol.129, issue.Pt 3, pp.271-290, 2011.
DOI : 10.1007/s00726-010-0689-x

C. Stuelten, D. Byfield, S. Arany, P. Karpova, T. Stetler-stevenson et al., Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-?? and TGF-??, Journal of Cell Science, vol.118, issue.10, pp.2143-2153, 2005.
DOI : 10.1242/jcs.02334

G. Rosenblum, P. Van-den-steen, S. Cohen, A. Bitler, D. Brand et al., Direct Visualization of Protease Action on Collagen Triple Helical Structure, PLoS ONE, vol.10, issue.6, p.11043, 2010.
DOI : 10.1371/journal.pone.0011043.s012

J. Sand, L. Larsen, C. Hogaboam, F. Martinez, M. Han et al., MMP Mediated Degradation of Type IV Collagen Alpha 1 and Alpha 3 Chains Reflects Basement Membrane Remodeling in Experimental and Clinical Fibrosis ??? Validation of Two Novel Biomarker Assays, PLoS ONE, vol.10, issue.12, p.84934, 2013.
DOI : 10.1371/journal.pone.0084934.t002

K. Kessenbrock, V. Plaks, and Z. Werb, Matrix Metalloproteinases: Regulators of the Tumor Microenvironment, Cell, vol.141, issue.1, pp.52-67, 2010.
DOI : 10.1016/j.cell.2010.03.015

W. Yu, J. Liu, X. Xiong, A. Y. Wang, and H. , Expression of MMP9 and CD147 in invasive squamous cell carcinoma of the uterine cervix and their implication, Pathol Res Pract, vol.205, pp.709-715, 2009.

Z. Zeng, Y. Huang, A. Cohen, and J. Guillem, Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9., Journal of Clinical Oncology, vol.14, issue.12
DOI : 10.1200/JCO.1996.14.12.3133

S. Sillanpaa, M. Anttila, K. Voutilainen, K. Ropponen, T. Turpeenniemi-hujanen et al., Prognostic significance of matrix metalloproteinase-9 (MMP-9) in epithelial ovarian cancer, Gynecologic Oncology, vol.104, issue.2, pp.296-303, 2007.
DOI : 10.1016/j.ygyno.2006.09.004

P. Mcgowan and M. Duffy, Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database, Annals of Oncology, vol.19, issue.9, pp.1566-1572, 2008.
DOI : 10.1093/annonc/mdn180

R. Roy, Y. J. Moses, and M. , Matrix Metalloproteinases As Novel Biomarker s and Potential Therapeutic Targets in Human Cancer, Journal of Clinical Oncology, vol.27, issue.31, pp.5287-5297, 2009.
DOI : 10.1200/JCO.2009.23.5556

P. Jezequel, J. Frenel, L. Campion, C. Guerin-charbonnel, W. Gouraud et al., Campone M: bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses, Database, p.60, 2013.

R. Neve, K. Chin, J. Fridlyand, J. Yeh, F. Baehner et al., A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes, Cancer Cell, vol.10, issue.6, pp.515-527, 2006.
DOI : 10.1016/j.ccr.2006.10.008

F. Tavassoli and . Dp, World Health Organization classification of tumours In Pathology and Genetics Tumours of the Breast and Female Genital Organs, pp.19-23, 2003.

S. Zhao, W. Ma, M. Zhang, D. Tang, Q. Shi et al., High expression of CD147 and MMP-9 is correlated with poor prognosis of triple-negative breast cancer (TNBC) patients, Medical Oncology, vol.4, issue.1, p.335, 2013.
DOI : 10.1007/s12032-012-0335-4

I. Jung, D. Jung, Y. Park, S. Song, and S. Park, Aberrant Hedgehog Ligands Induce Progressive Pancreatic Fibrosis by Paracrine Activation of Myofibroblasts and Ductular Cells in Transgenic Zebrafish, PLoS ONE, vol.438, issue.12, p.27941, 2011.
DOI : 10.1371/journal.pone.0027941.s005

A. Caldarella, D. Puliti, E. Crocetti, S. Bianchi, V. Vezzosi et al., Biological characteristics of interval cancers: a role for biomarkers in the breast cancer screening, Journal of Cancer Research and Clinical Oncology, vol.111, issue.15, pp.181-185, 2013.
DOI : 10.1007/s00432-012-1304-1

B. Testing-in and . Cancer, College of American Pathologists Clinical Practice Guideline Update, Arch Pathol Lab Med, vol.31, pp.3997-4013, 2013.

X. Bai, X. Ni, P. Zhao, S. Liu, H. Wang et al., Overexpression of annexin 1 in pancreatic cancer and its clinical significance, World Journal of Gastroenterology, vol.10, issue.10, pp.1466-1470, 2004.
DOI : 10.3748/wjg.v10.i10.1466

J. Kao, K. Salari, M. Bocanegra, Y. Choi, L. Girard et al., Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery, PLoS ONE, vol.4, issue.7, p.6146, 2009.
DOI : 10.1371/journal.pone.0006146.s003

T. Wilson, J. Fridlyand, Y. Yan, E. Penuel, L. Burton et al., Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors, Nature, vol.1, issue.7408, pp.505-509, 2012.
DOI : 10.1038/nature11249

K. Hoeflich, O. Brien, C. Boyd, Z. Cavet, G. Guerrero et al., In vivo Antitumor Activity of MEK and Phosphatidylinositol 3-Kinase Inhibitors in Basal-Like Breast Cancer Models, Clinical Cancer Research, vol.15, issue.14, pp.4649-4664, 2009.
DOI : 10.1158/1078-0432.CCR-09-0317

O. Kousidou, A. Roussidis, A. Theocharis, and N. Karamanos, Expression of MMPs and TIMPs genes in human breast cancer epithelial cells depends on cell culture conditions and is associated with their invasive potential, Anticancer Res, vol.24, pp.4025-4030, 2004.

J. Yao, S. Xiong, K. Klos, N. Nguyen, R. Grijalva et al., Multiple signaling pathways involved in activation of matrix metalloproteinase-9 (MMP-9) by heregulin-??1 in human breast cancer cells, Oncogene, vol.20, issue.56, pp.8066-8074, 2001.
DOI : 10.1038/sj.onc.1204944

M. Illemann, N. Bird, A. Majeed, M. Sehested, O. Laerum et al., MMP-9 Is Differentially Expressed in Primary Human Colorectal Adenocarcinomas and Their Metastases, Molecular Cancer Research, vol.4, issue.5, pp.293-302, 2006.
DOI : 10.1158/1541-7786.MCR-06-0003

M. Egeblad and Z. Werb, New functions for the matrix metalloproteinases in cancer progression, Nature Reviews Cancer, vol.78, issue.3, pp.161-174, 2002.
DOI : 10.1038/nrc745

M. Duffy, T. Maguire, A. Hill, E. Mcdermott, O. Higgins et al., Metalloproteinases: role in breast carcinogenesis, invasion and metastasis, Breast Cancer Research, vol.91, issue.4, pp.252-257, 2000.
DOI : 10.1093/jnci/91.19.1678

C. Lopez-otin and L. Matrisian, Emerging roles of proteases in tumour suppression, Nature Reviews Cancer, vol.46, issue.10, pp.800-808, 2007.
DOI : 10.1038/nrc2228

D. Cao, K. Polyak, M. Halushka, H. Nassar, N. Kouprina et al., Serial analysis of gene expression of lobular carcinoma in situ identifies down regulation of claudin 4 and overexpression of matrix metalloproteinase 9, Breast Cancer Research, vol.14, issue.5, p.91, 2008.
DOI : 10.1016/j.ccr.2008.06.012

M. Roomi, J. Monterrey, T. Kalinovsky, M. Rath, and A. Niedzwiecki, Distinct patterns of matrix metalloproteinase-2 and ?9 expression in normal human cell lines, Oncol Rep, vol.21, pp.821-826, 2009.

Y. St-pierre, J. Couillard, and C. Van-themsche, Regulation of MMP-9 gene expression for the development of novel molecular targets against cancer and inflammatory diseases, Expert Opinion on Therapeutic Targets, vol.19, issue.7, pp.473-489, 2004.
DOI : 10.1002/(SICI)1097-0215(19990719)82:2<268::AID-IJC18>3.0.CO;2-4

S. Radenkovic, G. Konjevic, V. Jurisic, K. Karadzic, M. Nikitovic et al., Values of MMP-2 and MMP-9 in Tumor Tissue of Basal-Like Breast Cancer Patients, Cell Biochemistry and Biophysics, vol.20, issue.3, pp.143-152, 2014.
DOI : 10.1007/s12013-013-9701-x

C. Mehner, A. Hockla, E. Miller, S. Ran, D. Radisky et al., Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer, Oncotarget, vol.5, issue.9, pp.2736-2749, 2014.
DOI : 10.18632/oncotarget.1932

L. Rocca, G. Pucci-minafra, I. Marrazzo, A. Taormina, P. Minafra et al., Zymographic detection and clinical correlations of MMP-2 and MMP-9 in breast cancer sera, British Journal of Cancer, vol.90, issue.7, pp.1414-1421, 2004.
DOI : 10.1038/sj.bjc.6601725

M. Labrie and Y. St-pierre, Epigenetic regulation of mmp-9 gene expression, Cellular and Molecular Life Sciences, vol.26, issue.Suppl 1, pp.3109-3124, 2013.
DOI : 10.1007/s00018-012-1214-z

URL : https://hal.archives-ouvertes.fr/pasteur-01009766

Z. Wu, Q. Wu, J. Yang, H. Wang, X. Ding et al., Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer, International Journal of Cancer, vol.46, issue.9, pp.2050-2056, 2008.
DOI : 10.1002/ijc.23337

D. Crowe and T. Brown, Transcriptional Inhibition of Matrix Metal loproteinase 9 (MMP-9) Activity by a c-fos/Estrogen Receptor Fusion Protein is Mediated by the Proximal AP-1 Site of the MMP-9 Promoter and Correlates with Reduced Tumor Cell Invasion, Neoplasia, vol.1, issue.4, pp.368-372, 1999.
DOI : 10.1038/sj.neo.7900041

. Van-'t, L. Veer, H. Dai, M. Van-de-vijver, Y. He et al., Gene expression profiling predicts clinical outcome of breast cancer, Nature, vol.415, pp.530-536, 2002.

L. Orlichenko and D. Radisky, Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development, Clinical & Experimental Metastasis, vol.40, issue.8, pp.593-600, 2008.
DOI : 10.1007/s10585-008-9143-9

J. David and A. Rajasekaran, Dishonorable Discharge: The Oncogenic Roles of Cleaved E-Cadherin Fragments, Cancer Research, vol.72, issue.12, pp.2917-2923, 2012.
DOI : 10.1158/0008-5472.CAN-11-3498

C. Lin, P. Tsai, C. Kandaswami, P. Lee, C. Huang et al., Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition, Cancer Science, vol.94, issue.Pt 4, pp.815-827, 2011.
DOI : 10.1111/j.1349-7006.2011.01861.x

J. C. Rundhaug and . Lockhart, Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor, Clin. Cancer Res. Clin Cancer Res, vol.9, issue.9, pp.0-00554551, 2003.

M. Bendeck, Macrophage Matrix Metalloproteinase-9 Regulates Angiogenesis in Ischemic Muscle, Circulation Research, vol.94, issue.2, pp.138-139, 2004.
DOI : 10.1161/01.RES.0000117525.23089.1A

Q. Wu, Q. Yang, Y. Huang, H. She, J. Liang et al., Expression and Clinical Significance of Matrix Metalloproteinase-9 in Lymphatic Invasiveness and Metastasis of Breast Cancer, PLoS ONE, vol.1131, issue.9, p.97804, 2014.
DOI : 10.1371/journal.pone.0097804.t003

J. Ross, C. Hatzis, W. Symmans, L. Pusztai, and G. Hortobagyi, Commercialized Multigene Predictors of Clinical Outcome for Breast Cancer, The Oncologist, vol.13, issue.5, pp.477-493, 2008.
DOI : 10.1634/theoncologist.2007-0248

S. Tian, P. Roepman, . Van-'t, L. Veer, R. Bernards et al., Biological functions of the genes in the mammaprint breast cancer profile reflect the hallmarks of cancer, Biomark Insights, vol.5, pp.129-138, 2010.