G. Giardina, Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases, Proceedings of the National Academy of Sciences, vol.108, issue.51, pp.20514-20519, 2011.
DOI : 10.1073/pnas.1111456108

URL : https://hal.archives-ouvertes.fr/pasteur-00975912

G. Fenalti, GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop, Nature Structural & Molecular Biology, vol.6, issue.4, pp.280-286, 2007.
DOI : 10.1111/j.1471-4159.1979.tb05274.x

C. Langendorf, Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates, Bioscience Reports, vol.66, issue.1, pp.137-144, 2013.
DOI : 10.1038/nsmb1228

A. Sali and T. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

M. Martí-renom, Comparative Protein Structure Modeling of Genes and Genomes, Annual Review of Biophysics and Biomolecular Structure, vol.29, issue.1, pp.291-325, 2000.
DOI : 10.1146/annurev.biophys.29.1.291

E. Krissinel, On the relationship between sequence and structure similarities in proteomics, Bioinformatics, vol.23, issue.6, pp.717-723, 2007.
DOI : 10.1093/bioinformatics/btm006

L. Schrödinger, The PyMOL Molecular Graphics System, 2010.

B. Hess, C. Kutzner, D. Van-der-spoel, and E. Lindahl, GROMACS 4:?? Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.3, pp.435-447, 2008.
DOI : 10.1021/ct700301q

C. Oostenbrink, A. Villa, A. Mark, and W. Van-gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6, Journal of Computational Chemistry, vol.91, issue.13, pp.1656-1676, 2004.
DOI : 10.1002/jcc.20090

H. Berendsen, J. Postma, and W. Van-gunsteren, Interaction models for water in relation to protein hydration. Intermolecular Forces The Netherlands), Pullman B, pp.331-342, 1981.

A. Malde, An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0, Journal of Chemical Theory and Computation, vol.7, issue.12, pp.4026-4037, 2011.
DOI : 10.1021/ct200196m

H. Berendsen, J. Postma, W. Vangunsteren, A. Dinola, and J. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.81, issue.8, pp.3684-3690, 1984.
DOI : 10.1063/1.448118

B. Hess, H. Bekker, H. Berendsen, and J. Fraaije, LINCS: A linear constraint solver for molecular simulations, Journal of Computational Chemistry, vol.19, issue.12, pp.1463-1472, 1997.
DOI : 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Hess, P-LINCS:?? A Parallel Linear Constraint Solver for Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.1, pp.116-122, 2008.
DOI : 10.1021/ct700200b

S. Miyamoto and P. Kollman, Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models, Journal of Computational Chemistry, vol.114, issue.8, pp.952-962, 1992.
DOI : 10.1002/jcc.540130805

I. Tironi, R. Sperb, P. Smith, and W. Van-gunsteren, A generalized reaction field method for molecular dynamics simulations, The Journal of Chemical Physics, vol.102, issue.13, pp.5451-5459, 1995.
DOI : 10.1063/1.469273

T. Heinz, W. Van-gunsteren, and P. Hunenberger, Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations, The Journal of Chemical Physics, vol.115, issue.3, 2001.
DOI : 10.1063/1.1379764

B. Brooks, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, vol.I, issue.2, pp.187-217, 1983.
DOI : 10.1002/jcc.540040211

B. Brooks, CHARMM: The biomolecular simulation program, Journal of Computational Chemistry, vol.103, issue.13, pp.1545-1614, 2009.
DOI : 10.1002/jcc.21287

N. Floquet, Normal mode analysis as a prerequisite for drug design: Application to matrix metalloproteinases inhibitors, FEBS Letters, vol.234, issue.22, pp.5130-5136, 2006.
DOI : 10.1016/j.febslet.2006.08.037

URL : https://hal.archives-ouvertes.fr/hal-00109799

E. Philot, D. Perahia, A. Braz, M. Costa, and L. Scott, Binding sites and hydrophobic pockets in Human Thioredoxin 1 determined by normal mode analysis, Journal of Structural Biology, vol.184, issue.2, 2013.
DOI : 10.1016/j.jsb.2013.09.002

W. Im, D. Beglov, and B. Roux, Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation, Computer Physics Communications, vol.111, issue.1-3, pp.1-359, 1998.
DOI : 10.1016/S0010-4655(98)00016-2

S. Jo, M. Vargyas, J. Vasko-szedlar, B. Roux, and W. Im, PBEQ-Solver for online visualization of electrostatic potential of biomolecules, Nucleic Acids Research, vol.36, issue.Web Server, pp.270-275, 2008.
DOI : 10.1093/nar/gkn314

F. Tama and Y. Sanejouand, Conformational change of proteins arising from normal mode calculations, Protein Engineering Design and Selection, vol.14, issue.1, pp.1-6, 2001.
DOI : 10.1093/protein/14.1.1

R. Laskowski, M. Macarthur, D. Moss, and J. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

M. Sippl, Recognition of errors in three-dimensional structures of proteins, Proteins: Structure, Function, and Genetics, vol.177, issue.4, pp.355-362, 1993.
DOI : 10.1002/prot.340170404

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

K. Teoh, S. Fida, M. Rowley, and I. Mackay, Autoantigenic Reactivity of Diabetes Sera with a Hybrid Glutamic Acid Decarboxylase GAD67???65 Molecule GAD67(1???101)/GAD65(96???585), Autoimmunity, vol.145, issue.4, pp.259-266, 1998.
DOI : 10.3109/08916939808995374

M. Powell, Glutamic acid decarboxylase autoantibody assay using 125I-labelled recombinant GAD65 produced in yeast, Clinica Chimica Acta, vol.256, issue.2, pp.175-188, 1996.
DOI : 10.1016/S0009-8981(96)06422-4

M. Primo, E. Anton, A. Villanueva, E. Poskus, and M. Ermácora, Engineered variants of human glutamic acid decarboxylase (GAD) and autoantibody epitope recognition, Clinical Immunology, vol.108, issue.1, pp.38-45, 2003.
DOI : 10.1016/S1521-6616(03)00061-5

T. Papakonstantinou, R. Law, P. Gardiner, M. Rowley, and I. Mackay, Comparative expression and purification of human glutamic acid decarboxylase from Saccharomyces cerevisiae and Pichia pastoris, Enzyme and Microbial Technology, vol.26, issue.9-10, pp.9-10645, 2000.
DOI : 10.1016/S0141-0229(00)00154-X

N. Kirby, A low-background-intensity focusing small-angle X-ray scattering undulator beamline, Journal of Applied Crystallography, vol.36, issue.6, pp.1670-1680, 2013.
DOI : 10.1107/S002188981302774X

A. Whitten, S. Cai, and J. Trewhella, : modules for the analysis of small-angle neutron contrast variation data from biomolecular assemblies, Journal of Applied Crystallography, vol.41, issue.1, pp.222-226, 2008.
DOI : 10.1107/S0021889807055136/ce5024sup1.pdf

D. Svergun, C. Barberato, and M. Koch, ??? a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, Journal of Applied Crystallography, vol.28, issue.6, pp.768-773, 1995.
DOI : 10.1107/S0021889895007047

P. Konarev, V. Volkov, A. Sokolova, M. Koch, and D. Svergun, : a Windows PC-based system for small-angle scattering data analysis, Journal of Applied Crystallography, vol.36, issue.5, pp.1277-1282, 2003.
DOI : 10.1107/S0021889803012779

C. Nogues, Characterisation of Peptide Microarrays for Studying Antibody-Antigen Binding Using Surface Plasmon Resonance Imagery, PLoS ONE, vol.20, issue.8, p.12152, 2010.
DOI : 10.1371/journal.pone.0012152.g004

D. Gottlieb, Y. Chang, and J. Schwob, Monoclonal antibodies to glutamic acid decarboxylase., Proceedings of the National Academy of Sciences, vol.83, issue.22, pp.8808-8812, 1986.
DOI : 10.1073/pnas.83.22.8808

C. Guilbert, F. Pecorari, D. Perahia, and L. Mouawad, Low frequency motions in phosphoglycerate kinase. A normal mode analysis, Chemical Physics, vol.204, issue.2-3, pp.327-336, 1996.
DOI : 10.1016/0301-0104(95)00293-6

P. Burkhard, P. Dominici, C. Borri-voltattorni, J. Jansonius, and V. Malashkevich, Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase, Nature Structural Biology, vol.8, issue.11, pp.963-967, 2001.
DOI : 10.1038/nsb1101-963

N. Floquet, Collective motions in Glucosamine-6-phosphate Synthase: Influence of Ligand Binding and role in Ammonia Channelling and Opening of the Fructose-6-Phosphate Binding Site, Journal of Molecular Biology, vol.385, issue.2, pp.653-664, 2009.
DOI : 10.1016/j.jmb.2008.10.032

URL : https://hal.archives-ouvertes.fr/hal-00365799

P. Batista, Consensus modes, a robust description of protein collective motions from multiple-minima normal mode analysis???application to the HIV-1 protease, Physical Chemistry Chemical Physics, vol.102, issue.12, pp.2850-2859, 2010.
DOI : 10.1039/b919148h

S. Movie, A comparison between the dynamics of apo-and holoGAD65. A movie of a 250-ns representative trajectory of (Upper) apo-and (Lower) holoGAD65 in solution. Proteins are shown in two side views, such that the dynamics of both subunits can be seen. The movie contains snapshots of every 100 ps of the simulation smoothed for visualization purposes

S. Movie, NM calculations revealing structural transitions involved in the closed-to-open transition of GAD65. Concerted motions between the PLP-binding domains and CTDs coupled by the CL (red) can be seen