M. W. Day, B. T. Hsu, L. Joshua-tor, J. Park, Z. H. Zhou et al., X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium pyrococcus furiosus, Protein Science, vol.163, issue.1, pp.1494-1507, 1992.
DOI : 10.1002/pro.5560011111

. Fig, Temperature dependence of ?H Tm for wt and ProE3Gly Tf-trHbO (A) and wt and GlyE3Pro Mt-trHbO (B) trHbs. The thermodynamic parameters ?H Tm and T m , obtained from the fitting procedure of the melting profiles of Fig. 1S are shown as a function of GdmCl concentration (0.5, 1, 1.5 and 2 M, respectively) The slopes yielded values of ?C p (kcal · mol ?1 · K ?1 ) of 1.56 ± 0.07 for wt Tf-trHbO (?), 1.22 ± 0, 07 for ProE3Gly TftrHbO (?) and 1.21 ± 0.07 for wt Mt-trHbO (?), 1.28 ± 0.06 for GlyE3Pro Mt-trHbO (?), respectively. Preferred magnification factor: single column

. Fig, The salt-bridge interactions between CD loop and B ?-helix at the protein surface on Tf-trHbO is shown. It can be assumed that GdmCl molecules are able to disrupt this network interactions due to fact that they have complete access from solvent environment

G. Auerbach, R. Ostendorp, L. Prade, I. Korndörfer, T. Dams et al., Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: the crystal structure at 2.1 ?? resolution reveals strategies for intrinsic protein stabilization, Structure, vol.6, issue.6, pp.769-781, 1998.
DOI : 10.1016/S0969-2126(98)00078-1

C. Vieille, J. Hess, R. Kelly, and J. , Zeikus, xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana, Appl. Environ. Microbiol, vol.61, issue.5, pp.1867-1875, 1995.

L. Chen and M. F. Roberts, Characterization of a tetrameric inositol monophosphatase from the hyperthermophilic bacterium Thermotoga maritima, Appl. Environ. Microbiol, vol.65, issue.10, pp.4559-4567, 1999.

R. Jaenicke, Protein stability and molecular adaptation to extreme conditions, Eur. J. Biochem, vol.202, issue.3, pp.715-728, 1991.
DOI : 10.1007/978-3-642-77200-9_22

M. W. Adams and R. M. Kelly, ENZYMES FROM MICROORGANISMS IN EXTREME ENVIRONMENTS, Chemical & Engineering News, vol.73, issue.51, pp.32-42, 1995.
DOI : 10.1021/cen-v073n051.p032

R. Jaenicke and G. Böhm, The stability of proteins in extreme environments, Current Opinion in Structural Biology, vol.8, issue.6, pp.738-748, 1998.
DOI : 10.1016/S0959-440X(98)80094-8

T. Lazaridis, I. Lee, and M. Karplus, Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin, Protein Science, vol.29, issue.12, pp.2589-2605, 1997.
DOI : 10.1002/pro.5560061211

G. Manco, E. Giosuè, S. D-'auria, P. Herman, G. Carrea et al., Cloning, Overexpression, and Properties of a New Thermophilic and Thermostable Esterase with Sequence Similarity to Hormone-Sensitive Lipase Subfamily from the Archaeon Archaeoglobus fulgidus, Archives of Biochemistry and Biophysics, vol.373, issue.1, pp.182-192, 2000.
DOI : 10.1006/abbi.1999.1497

P. Závodszky, J. Kardos, G. A. Svingor, and . Petsko, Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins, Proceedings of the National Academy of Sciences, vol.95, issue.13, pp.95-7406, 1998.
DOI : 10.1073/pnas.95.13.7406

T. Mamonova, A. Glyakina, O. Galzitskaya, and M. Kurnikova, Stability and rigidity/flexibility???Two sides of the same coin?, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1834, issue.5, pp.854-866, 2013.
DOI : 10.1016/j.bbapap.2013.02.011

G. Hernández, F. E. Jenney-jr, M. W. Adams, and D. M. Lemaster, Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature, Proceedings of the National Academy of Sciences, vol.97, issue.7, pp.3166-3170, 2000.
DOI : 10.1073/pnas.97.7.3166

J. D. Bryngelson, J. N. Onuchic, N. D. Socci, and P. G. , Funnels, pathways, and the energy landscape of protein folding: A synthesis, Proteins: Structure, Function, and Genetics, vol.90, issue.3, pp.167-195, 1995.
DOI : 10.1002/prot.340210302

G. Vogt, S. Woell, and P. Argos, Protein thermal stability, hydrogen bonds, and ion pairs, Journal of Molecular Biology, vol.269, issue.4, pp.631-643, 1997.
DOI : 10.1006/jmbi.1997.1042

B. W. Matthews, H. Nicholson, and W. J. Becktel, Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding., Proc. Natl. Acad
DOI : 10.1073/pnas.84.19.6663

G. Bohm and R. Jaenicke, Relevance of sequence statistics for the properties of extremophilic proteins, International Journal of Peptide and Protein Research, vol.169, issue.1, pp.97-106, 1994.
DOI : 10.1111/j.1399-3011.1994.tb00380.x

F. Sterpone and S. Melchionna, Thermophilic proteins: insight and perspective from in silico experiments, Chem. Soc. Rev., vol.130, issue.5, pp.41-1665, 2012.
DOI : 10.1039/C1CS15199A

URL : https://hal.archives-ouvertes.fr/hal-01498109

L. Bleicher, E. T. Prates, T. C. Gomes, R. L. Silveira, A. S. Nascimento et al., and Molecular Dynamics Simulations, The Journal of Physical Chemistry B, vol.115, issue.24, pp.24-7940, 2011.
DOI : 10.1021/jp200330z

A. Bonamore, A. Ilari, L. Giangiacomo, A. Bellelli, V. Morea et al., A novel thermostable hemoglobin from the actinobacterium Thermobifida fusca, FEBS Journal, vol.84, issue.16, pp.4189-4201, 2005.
DOI : 10.1111/j.1742-4658.2005.04831.x

M. Milani, P. Savard, H. Ouellet, P. Ascenzi, M. Guertin et al., A TyrCD1/TrpG8 hydrogen bond network and a TyrB10--TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O, Proceedings of the National Academy of Sciences, vol.100, issue.10, pp.5766-5771, 2003.
DOI : 10.1073/pnas.1037676100

F. P. Nicoletti, E. Droghetti, L. Boechi, A. Bonamore, N. Sciamanna et al., Fluoride as a probe for H-bonding interactions in the active site of heme proteins: the case of Thermobifida fusca hemoglobin, J. Am. Chem. Soc, issue.51, pp.133-20970, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00975327

F. P. Nicoletti, E. Droghetti, B. D. Howes, J. P. Bustamante, A. Bonamore et al., H-bonding networks of the distal residues and water molecules in the active site of Thermobifida fusca hemoglobin, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1834, issue.9, pp.1901-1909, 2013.
DOI : 10.1016/j.bbapap.2013.02.033

URL : https://hal.archives-ouvertes.fr/pasteur-01024175

D. A. Salvi, S. Estrin, C. Bruno, P. Viappiani, and . Foggi, Following ligand migration pathways from picoseconds to milliseconds in type II truncated hemoglobin from Thermobifida fusca, PLoS One, vol.7, issue.7, p.39884, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00952100

J. Wang, P. Cieplak, and P. A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, Journal of Computational Chemistry, vol.18, issue.12, pp.1049-1074, 2000.
DOI : 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F

M. A. Marti, L. Capece, A. Bidon-chanal, A. Crespo, V. Guallar et al., Nitric Oxide Reactivity with Globins as Investigated Through Computer Simulation, Methods Enzymol, vol.437, pp.477-498, 2008.
DOI : 10.1016/S0076-6879(07)37024-9

M. A. Marti, A. Crespo, L. Capece, L. Boechi, D. E. Bikiel et al., Dioxygen affinity in heme proteins investigated by computer simulation, Journal of Inorganic Biochemistry, vol.100, issue.4, pp.761-770, 2006.
DOI : 10.1016/j.jinorgbio.2005.12.009

D. E. Bikiel, L. Boechi, L. Capece, A. Crespo, P. M. De-biase et al., Modeling heme proteins using atomistic simulations, Modeling heme proteins using atomistic simulations, pp.5611-5628, 2006.
DOI : 10.1039/B611741B

F. Forti, L. Boechi, D. Bikiel, M. A. Martí, M. Nardini et al., Ligand Migration in Methanosarcina acetivorans Protoglobin: Effects of Ligand Binding and Dimeric Assembly, The Journal of Physical Chemistry B, vol.115, issue.46, pp.13771-13780, 2011.
DOI : 10.1021/jp208562b

L. Capece, A. Lewis-ballester, M. A. Marti, D. A. Estrin, and S. Yeh, Molecular Basis for the Substrate Stereoselectivity in Tryptophan Dioxygenase, Biochemistry, vol.50, issue.50, pp.10910-10918, 2011.
DOI : 10.1021/bi201439m

D. Giordano, L. Boechi, U. Samuni, A. Vergara, M. A. Mart? et al., The hemoglobins of the sub-antarctic fish Cottoperca gobio, a phyletically basal species ? oxygen-binding equilibria, kinetics and molecular dynamics, FEBS J, pp.276-2266, 2009.

D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham et al., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Computer Physics Communications, vol.91, issue.1-3, pp.1-3, 1995.
DOI : 10.1016/0010-4655(95)00041-D

A. Matouschelt, J. M. Matthews, C. M. Johnson, and A. R. Fersht, Extrapolation to water of kinetic and equilibrium data for the unfolding of barnase in urea solutions, "Protein Engineering, Design and Selection", vol.7, issue.9, pp.1089-1095, 1994.
DOI : 10.1093/protein/7.9.1089

J. Clarke and A. R. Fersht, Engineered disulfide bonds as probes of the folding pathway of barnase: Increasing the stability of proteins against the rate of denaturation, Biochemistry, vol.32, issue.16, pp.4322-4329, 1993.
DOI : 10.1021/bi00067a022

P. I. De-bakker, P. H. Hünenberger, and J. A. Mccammon, Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability, Journal of Molecular Biology, vol.285, issue.4, pp.1811-1830, 1999.
DOI : 10.1006/jmbi.1998.2397

G. I. Makhatadze, V. V. Loladze, D. N. Ermolenko, X. Chen, and S. T. Thomas, Contribution of Surface Salt Bridges to Protein Stability: Guidelines for Protein Engineering, Journal of Molecular Biology, vol.327, issue.5, pp.1135-1148, 2003.
DOI : 10.1016/S0022-2836(03)00233-X

L. Capece, M. A. Marti, A. Bidon-chanal, A. Nadra, F. J. Luque et al., High pressure reveals structural determinants for globin hexacoordination: Neuroglobin and myoglobin cases, Proteins: Structure, Function, and Bioinformatics, vol.123, issue.4, pp.885-894, 2009.
DOI : 10.1002/prot.22297

L. Giangiacomo, A. Ilari, A. Boffi, V. Morea, and E. Chiancone, The Truncated Oxygen-avid Hemoglobin from Bacillus subtilis: X-RAY STRUCTURE AND LIGAND BINDING PROPERTIES, Journal of Biological Chemistry, vol.280, issue.10, pp.9192-9202, 2005.
DOI : 10.1074/jbc.M407267200

A. Crespo, M. A. Martí, S. G. Kalko, A. Morreale, M. Orozco et al., Theoretical Study of the Truncated Hemoglobin HbN:?? Exploring the Molecular Basis of the NO Detoxification Mechanism, Journal of the American Chemical Society, vol.127, issue.12, pp.4433-4444, 2005.
DOI : 10.1021/ja0450004

D. Hamdane, L. Kiger, S. Dewilde, J. Uzan, T. Burmester et al., Hyperthermal stability of neuroglobin and cytoglobin, FEBS Journal, vol.27, issue.8, pp.2076-2084, 2005.
DOI : 10.1111/j.1742-4658.2005.04635.x