E. R. Andersson, R. Sandberg, and U. , Notch signaling: simplicity in design, versatility in function, Development, vol.138, issue.17, pp.3593-3612, 2011.
DOI : 10.1242/dev.063610

S. J. Bray, Notch signalling: a simple pathway becomes complex, Nature Reviews Molecular Cell Biology, vol.281, issue.9, pp.678-689, 2006.
DOI : 10.1016/S1534-5807(04)00097-8

K. G. Leong and A. Karsan, Recent insights into the role of Notch signaling in tumorigenesis, Blood, vol.107, issue.6, pp.2223-2233, 2006.
DOI : 10.1182/blood-2005-08-3329

M. Roy, W. S. Pear, and J. C. Aster, The multifaceted role of Notch in cancer, Current Opinion in Genetics & Development, vol.17, issue.1, pp.52-59, 2007.
DOI : 10.1016/j.gde.2006.12.001

D. Bellavia, A. F. Campese, E. Alesse, A. Vacca, M. P. Felli et al., Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice, The EMBO Journal, vol.19, issue.13, pp.3337-3348, 2000.
DOI : 10.1093/emboj/19.13.3337

D. Bellavia, A. F. Campese, S. Checquolo, A. Balestri, A. Biondi et al., Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis, Proc. Natl. Acad. Sci. U. S. A, pp.99-3788, 2002.

P. Sansone, G. Storci, C. Giovannini, S. Pandolfi, S. Pianetti et al., p66Shc/Notch-3 Interplay Controls Self-Renewal and Hypoxia Survival in Human Stem/Progenitor Cells of the Mammary Gland Expanded In Vitro as Mammospheres, STEM CELLS, vol.11, issue.3, pp.25-807, 2007.
DOI : 10.1634/stemcells.2006-0442

S. G. Jung, Y. D. Kwon, J. A. Song, M. J. Back, S. Y. Lee et al., Prognostic significance of Notch 3 gene expression in ovarian serous carcinoma, Cancer Science, vol.65, issue.18, pp.1977-1983, 2010.
DOI : 10.1111/j.1349-7006.2010.01641.x

J. Van-nes, A. Chan, T. Van-groningen, P. Van-sluis, J. Koster et al., A NOTCH3 Transcriptional Module Induces Cell Motility in Neuroblastoma, Clinical Cancer Research, vol.19, issue.13, pp.3485-3494, 2013.
DOI : 10.1158/1078-0432.CCR-12-3021

Y. Z. Ye, Z. H. Zhang, X. Y. Fan, X. L. Xu, M. L. Chen et al., NOTCH3 overexpression associates with poor prognosis in human non-small-cell lung cancer, Med. Oncol, pp.30-595, 2013.

M. A. Alqudah, S. Agarwal, M. S. Al-keilani, Z. A. Sibenaller, T. C. Ryken et al., NOTCH3 Is a Prognostic Factor That Promotes Glioma Cell Proliferation, Migration and Invasion via Activation of CCND1 and EGFR, PLoS ONE, vol.13, issue.10, p.77299, 2013.
DOI : 10.1371/journal.pone.0077299.s002

T. P. Dang, A. F. Gazdar, A. K. Virmani, T. Sepetavec, K. R. Hande et al., Chromosome 19 Translocation, Overexpression of Notch3, and Human Lung Cancer, JNCI Journal of the National Cancer Institute, vol.92, issue.16, pp.92-1355, 2000.
DOI : 10.1093/jnci/92.16.1355

M. Kadota, M. Sato, B. Duncan, A. Ooshima, H. H. Yang et al., Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA, Cancer Res, pp.69-7357, 2009.

F. Micci, I. Panagopoulos, G. E. Tjonnfjord, A. Kolstad, J. Delabie et al., Molecular cytogenetic characterization of t(14;19)(q32;p13), a new recurrent translocation in B cell malignancies, Virchows Arch, pp.450-559, 2007.

J. T. Park, M. Li, K. Nakayama, T. L. Mao, B. Davidson et al., Notch3 Gene Amplification in Ovarian Cancer, NOTCH3 gene amplification in ovarian cancer, pp.6312-6318, 2006.
DOI : 10.1158/0008-5472.CAN-05-3610

E. M. Klenova, H. C. Morse-3rd, R. Ohlsson, and V. V. Lobanenkov, The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer, Seminars in Cancer Biology, vol.12, issue.5, pp.399-414, 2002.
DOI : 10.1016/S1044-579X(02)00060-3

D. I. Loukinov, E. Pugacheva, S. Vatolin, S. D. Pack, H. Moon et al., BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma, Proceedings of the National Academy of Sciences, vol.99, issue.10, pp.99-6806, 2002.
DOI : 10.1073/pnas.092123699

K. Cartharius, K. Frech, K. Grote, B. Klocke, M. Haltmeier et al., MatInspector and beyond: promoter analysis based on transcription factor binding sites, Bioinformatics, vol.21, issue.13, pp.2933-2942, 2005.
DOI : 10.1093/bioinformatics/bti473

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/21/13/2933

K. Quandt, K. Frech, H. Karas, E. Wingender, and T. Werner, Matlnd and Matlnspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data, Nucleic Acids Research, vol.23, issue.23, pp.4878-4884, 1995.
DOI : 10.1093/nar/23.23.4878

R. N. Plasschaert, S. Vigneau, I. Tempera, R. Gupta, J. Maksimoska et al., CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation, Nucleic Acids Res, pp.42-774, 2014.

L. R. Meyer, A. S. Zweig, A. S. Hinrichs, D. Karolchik, R. M. Kuhn et al., The UCSC Genome Browser database: extensions and updates 2013, Nucleic Acids Research, vol.41, issue.D1, pp.41-64, 2012.
DOI : 10.1093/nar/gks1048

W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle et al., The Human Genome Browser at UCSC, Genome Research, vol.12, issue.6, pp.996-1006, 2002.
DOI : 10.1101/gr.229102

K. R. Rosenbloom, C. A. Sloan, V. S. Malladi, T. R. Dreszer, K. Learned et al., ENCODE Data in the UCSC Genome Browser: year 5 update, Nucleic Acids Research, vol.41, issue.D1, pp.41-56, 2012.
DOI : 10.1093/nar/gks1172

R. De-necochea-campion, A. Ghochikyan, S. F. Josephs, S. Zacharias, E. Woods et al., Expression of the Epigenetic factor BORIS (CTCFL) in the Human Genome, Journal of Translational Medicine, vol.9, issue.1, 2011.
DOI : 10.1093/hmg/ddg034

T. A. Hore, J. E. Deakin, and J. A. Graves, The Evolution of Epigenetic Regulators CTCF and BORIS/CTCFL in Amniotes, PLoS Genetics, vol.13, issue.8, p.1000169, 2008.
DOI : 10.1371/journal.pgen.1000169.s004

F. Sleutels, W. Soochit, M. Bartkuhn, H. Heath, S. Dienstbach et al., The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner, Epigenetics & Chromatin, vol.5, issue.1, 2012.
DOI : 10.1186/1756-8935-5-8

E. M. Pugacheva, T. Suzuki, S. D. Pack, N. Kosaka-suzuki, J. Yoon et al., The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer, PLoS ONE, vol.267, issue.11, p.13872, 2010.
DOI : 10.1371/journal.pone.0013872.s011

Z. Wang, C. Zang, J. A. Rosenfeld, D. E. Schones, A. Barski et al., Combinatorial patterns of histone acetylations and methylations in the human genome, Nature Genetics, vol.18, issue.7, pp.40-897, 2008.
DOI : 10.1073/pnas.0400782101

R. Ohlsson, M. Bartkuhn, and R. Renkawitz, CTCF shapes chromatin by multiple mechanisms: the impact of 20??years of CTCF research on understanding the workings of chromatin, Chromosoma, vol.38, issue.4, pp.351-360, 2010.
DOI : 10.1007/s00412-010-0262-0

R. Ohlsson, V. Lobanenkov, and E. Klenova, Does CTCF mediate between nuclear organization and gene expression?, BioEssays, vol.28, issue.1, pp.37-50, 2010.
DOI : 10.1002/bies.200900118

J. E. Phillips and V. G. Corces, CTCF: Master Weaver of the Genome, Cell, vol.137, issue.7, pp.1194-1211, 2009.
DOI : 10.1016/j.cell.2009.06.001

J. Zlatanova and P. Caiafa, CCCTC-binding factor: to loop or to bridge, Cellular and Molecular Life Sciences, vol.66, issue.10, pp.1647-1660, 2009.
DOI : 10.1007/s00018-009-8647-z

V. D. Arcy, Z. K. Abdullaev, N. Pore, F. Docquier, V. Torrano et al., The Potential of BORIS Detected in the Leukocytes of Breast Cancer Patients as an Early Marker of Tumorigenesis, Clinical Cancer Research, vol.12, issue.20, pp.5978-5986, 2006.
DOI : 10.1158/1078-0432.CCR-05-2731

V. D. Arcy, N. Pore, F. Docquier, Z. K. Abdullaev, I. Chernukhin et al., BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours, British Journal of Cancer, vol.10, issue.3, pp.571-579, 2008.
DOI : 10.1189/jlb.1105653

I. Martin-kleiner, BORIS in human cancers ??? A review, European Journal of Cancer, vol.48, issue.6, pp.929-935, 2012.
DOI : 10.1016/j.ejca.2011.09.009

J. A. Hong, Y. Kang, Z. Abdullaev, P. T. Flanagan, S. D. Pack et al., Reciprocal binding of CTCF and BORIS to the NY-ESO-1 promoter coincides with derepression of this cancer-testis gene in lung cancer cells, Cancer Res, pp.65-7763, 2005.

S. Renaud, E. M. Pugacheva, M. D. Delgado, R. Braunschweig, Z. Abdullaev et al., Expression of the CTCF-paralogous cancer-testis gene, brother of the regulator of imprinted sites (BORIS), is regulated by three alternative promoters modulated by CpG methylation and by CTCF and p53 transcription factors, Nucleic Acids Research, vol.35, issue.21, pp.7372-7388, 2007.
DOI : 10.1093/nar/gkm896

S. Vatolin, Z. Abdullaev, S. D. Pack, P. T. Flanagan, M. Custer et al., Conditional expression of the CTCF-paralogous transcriptional factor BORIS in normal cells results in demethylation and derepression of MAGE-A1 and reactivation of other cancer-testis genes, Cancer Res, pp.65-7751, 2005.

N. Kosaka-suzuki, T. Suzuki, E. M. Pugacheva, A. A. Vostrov, H. C. Morse-3rd et al., Transcription Factor BORIS (Brother of the Regulator of Imprinted Sites) Directly Induces Expression of a Cancer-Testis Antigen, TSP50, through Regulated Binding of BORIS to the Promoter, Journal of Biological Chemistry, vol.286, issue.31, pp.27378-27388, 2011.
DOI : 10.1074/jbc.M111.243576

S. Renaud, D. Loukinov, L. Alberti, A. Vostrov, Y. W. Kwon et al., BORIS/CTCFL-mediated transcriptional regulation of the hTERT telomerase gene in testicular and ovarian tumor cells, Nucleic Acids Research, vol.39, issue.3, pp.862-873, 2011.
DOI : 10.1093/nar/gkq827

L. Sun, L. Huang, P. Nguyen, K. S. Bisht, G. Bar-sela et al., DNA methyltransferase 1 and 3B activate BAG-1 expression via recruitment of CTCFL/BORIS and modulation of promoter histone methylation, Cancer Res, pp.68-2726, 2008.

S. Bhan, S. S. Negi, C. Shao, C. A. Glazer, A. Chuang et al., BORIS Binding to the Promoters of Cancer Testis Antigens, MAGEA2, MAGEA3, and MAGEA4, Is Associated with Their Transcriptional Activation in Lung Cancer, Clinical Cancer Research, vol.17, issue.13, pp.4267-4276, 2011.
DOI : 10.1158/1078-0432.CCR-11-0653

T. Suzuki, N. Kosaka-suzuki, S. Pack, D. M. Shin, J. Yoon et al., Expression of a Testis-Specific Form of Gal3st1 (CST), a Gene Essential for Spermatogenesis, Is Regulated by the CTCF Paralogous Gene BORIS, Molecular and Cellular Biology, vol.30, issue.10, pp.30-2473, 2010.
DOI : 10.1128/MCB.01093-09

D. Gaykalova, R. Vatapalli, C. A. Glazer, S. Bhan, C. Shao et al., Dose-Dependent Activation of Putative Oncogene SBSN by BORIS, PLoS ONE, vol.5, issue.7, p.40389, 2012.
DOI : 10.1371/journal.pone.0040389.s014

P. Nguyen, G. Bar-sela, L. Sun, K. S. Bisht, H. Cui et al., BAT3 and SET1A Form a Complex with CTCFL/BORIS To Modulate H3K4 Histone Dimethylation and Gene Expression, Molecular and Cellular Biology, vol.28, issue.21, pp.28-6720, 2008.
DOI : 10.1128/MCB.00568-08

H. Nishikawa, Y. Maeda, T. Ishida, S. Gnjatic, E. Sato et al., Cancer/testis antigens are novel targets of immunotherapy for adult T-cell leukemia/lymphoma, Blood, vol.119, issue.13, pp.3097-3104, 2012.
DOI : 10.1182/blood-2011-09-379982

A. Ghochikyan, M. Mkrtichyan, D. Loukinov, G. Mamikonyan, S. D. Pack et al., Elicitation of T Cell Responses to Histologically Unrelated Tumors by Immunization with the Novel Cancer-Testis Antigen, Brother of the Regulator of Imprinted Sites, The Journal of Immunology, vol.178, issue.1, pp.178-566, 2007.
DOI : 10.4049/jimmunol.178.1.566

D. Loukinov, A. Ghochikyan, M. Mkrtichyan, T. E. Ichim, V. V. Lobanenkov et al., Antitumor efficacy of DNA vaccination to the epigenetically acting tumor promoting transcription factor BORIS and CD80 molecular adjuvant, Journal of Cellular Biochemistry, vol.50, issue.5, pp.98-1037, 2006.
DOI : 10.1002/jcb.20953

M. Mkrtichyan, A. Ghochikyan, H. Davtyan, N. Movsesyan, D. Loukinov et al., Cancer-testis antigen, BORIS based vaccine delivered by dendritic cells is extremely effective against a very aggressive and highly metastatic mouse mammary carcinoma, Cellular Immunology, vol.270, issue.2, pp.188-197, 2011.
DOI : 10.1016/j.cellimm.2011.05.007

M. Mkrtichyan, A. Ghochikyan, D. Loukinov, H. Davtyan, T. E. Ichim et al., DNA, but not protein vaccine based on mutated BORIS antigen significantly inhibits tumor growth and prolongs the survival of mice, Gene Therapy, vol.60, issue.1, pp.61-64, 2008.
DOI : 10.1186/1475-2867-5-25

C. Talora, S. Cialfi, C. Oliviero, R. Palermo, M. Pascucci et al., Cross talk among Notch3, pre-TCR, and Tal1 in T-cell development and leukemogenesis, Blood, vol.107, issue.8, pp.3313-3320, 2006.
DOI : 10.1182/blood-2005-07-2823

M. Zampieri, T. Guastafierro, R. Calabrese, F. Ciccarone, M. G. Bacalini et al., ADP-ribose polymers localized on Ctcf???Parp1???Dnmt1 complex prevent methylation of Ctcf target sites, Biochemical Journal, vol.7, issue.2, pp.441-645, 2012.
DOI : 10.1128/MCB.00704-08

URL : https://hal.archives-ouvertes.fr/pasteur-00955898

M. Zampieri, C. Passananti, R. Calabrese, M. Perilli, N. Corbi et al., Parp1 Localizes within the Dnmt1 Promoter and Protects Its Unmethylated State by Its Enzymatic Activity, Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity, p.4717, 2009.
DOI : 10.1371/journal.pone.0004717.s003

T. Guastafierro, A. Catizone, R. Calabrese, M. Zampieri, O. Martella et al., ADP-ribose polymer depletion leads to nuclear Ctcf re-localization and chromatin rearrangement, Biochemical Journal, vol.19, issue.3, pp.449-623, 2013.
DOI : 10.1128/MCB.00704-08

URL : https://hal.archives-ouvertes.fr/pasteur-01053368