M. Champsaur and L. Lanier, Effect of NKG2D ligand expression on host immune responses, Immunological Reviews, vol.121, issue.1, pp.267-85, 2010.
DOI : 10.1111/j.0105-2896.2010.00893.x

M. Gleimer and P. Parham, Stress Management, Immunity, vol.19, issue.4, pp.469-77, 2003.
DOI : 10.1016/S1074-7613(03)00272-3

A. Zingoni, M. Ardolino, A. Santoni, and C. Cerboni, NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses, Frontiers in Immunology, vol.3, 2012.
DOI : 10.3389/fimmu.2012.00408

URL : https://hal.archives-ouvertes.fr/pasteur-00966878

F. Baychelier and V. Vieillard, The Modulation of the Cell-Cycle: A Sentinel to Alert the NK Cells of Dangers, Frontiers in Immunology, vol.4, 2013.
DOI : 10.3389/fimmu.2013.00325

A. Shibuya, D. Campbell, C. Hannum, H. Yssel, K. Franz-bacon et al., DNAM-1, A Novel Adhesion Molecule Involved in the Cytolytic Function of T Lymphocytes, Immunity, vol.4, issue.6, pp.573-81, 1996.
DOI : 10.1016/S1074-7613(00)70060-4

C. Bottino, R. Castriconi, D. Pende, P. Rivera, M. Nanni et al., Identification of PVR (CD155) and Nectin-2 (CD112) as Cell Surface Ligands for the Human DNAM-1 (CD226) Activating Molecule, The Journal of Experimental Medicine, vol.9, issue.4, pp.557-67, 2003.
DOI : 10.1016/0092-8674(94)90337-9

A. Soriani, A. Zingoni, C. Cerboni, M. Iannitto, M. Ricciardi et al., ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype, Blood, vol.113, issue.15, pp.3503-3514, 2009.
DOI : 10.1182/blood-2008-08-173914

M. Ardolino, A. Zingoni, C. Cerboni, F. Cecere, A. Soriani et al., DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-dependent activation of DNA-damage response: relevance for NK-T cell interaction, Blood, vol.117, issue.18, pp.4778-86, 2011.
DOI : 10.1182/blood-2010-08-300954

T. Morisaki, H. Onishi, and M. Katano, Cancer immunotherapy using NKG2D and DNAM-1 systems, Anticancer Res, vol.32, issue.6, pp.2241-2248, 2012.

A. Iannello and D. Raulet, Immune Surveillance of Unhealthy Cells by Natural Killer Cells, Cold Spring Harbor Symposia on Quantitative Biology, vol.78, issue.0, 2013.
DOI : 10.1101/sqb.2013.78.020255

S. Gasser, S. Orsulic, E. Brown, and D. Raulet, The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor, Nature, vol.19, issue.7054, pp.1186-90, 2005.
DOI : 10.1038/nature03884

A. Ciccia and S. Elledge, The DNA Damage Response: Making It Safe to Play with Knives, Molecular Cell, vol.40, issue.2, pp.179-204, 2010.
DOI : 10.1016/j.molcel.2010.09.019

A. Sancar, L. Lindsey-boltz, K. Unsal-kacmaz, and S. Linn, Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints, Annual Review of Biochemistry, vol.73, issue.1, pp.39-85, 2004.
DOI : 10.1146/annurev.biochem.73.011303.073723

S. Jackson and J. Bartek, The DNA-damage response in human biology and disease, Nature, vol.37, issue.7267, pp.1071-1079, 2009.
DOI : 10.1038/nature08467

C. Lord and A. Ashworth, The DNA damage response and cancer therapy, Nature, vol.146, issue.7381, pp.481287-94, 2012.
DOI : 10.1038/nature10760

M. Kastan and J. Bartek, Cell-cycle checkpoints and cancer, Nature, vol.9, issue.7015, pp.316-339, 2004.
DOI : 10.1038/ng1282

F. Derheimer and M. Kastan, Multiple roles of ATM in monitoring and maintaining DNA integrity, FEBS Letters, vol.4, issue.17, pp.3675-81, 2010.
DOI : 10.1016/j.febslet.2010.05.031

C. Lovejoy and D. Cortez, Common mechanisms of PIKK regulation, DNA Repair, vol.8, issue.9, pp.1004-1012, 2009.
DOI : 10.1016/j.dnarep.2009.04.006

E. Oricchio, C. Saladino, S. Iacovelli, S. Soddu, and C. E. Atm, ATM is Activated by Default in Mitosis, Localizes at Centrosomes and Monitors Mitotic Spindle Integrity, Cell Cycle, vol.5, issue.1, pp.88-92, 2006.
DOI : 10.4161/cc.5.1.2269

D. Yang and M. Kastan, Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1, Nat Cell Biol, vol.2, issue.12, pp.893-901, 2000.

A. Bredemeyer, G. Sharma, C. Huang, B. Helmink, L. Walker et al., ATM stabilizes DNA double-strand-break complexes during V(D)J recombination, Nature, vol.194, issue.7101, pp.466-70, 2006.
DOI : 10.1038/nature04866

H. Chen, A. Bhandoola, M. Difilippantonio, J. Zhu, M. Brown et al., Response to RAG-Mediated V(D)J Cleavage by NBS1 and gamma-H2AX, Science, vol.290, issue.5498, pp.1962-1967, 1962.
DOI : 10.1126/science.290.5498.1962

P. Eissmann, J. Evans, M. Mehrabi, E. Rose, S. Nedvetzki et al., Multiple Mechanisms Downstream of TLR-4 Stimulation Allow Expression of NKG2D Ligands To Facilitate Macrophage/NK Cell Crosstalk, The Journal of Immunology, vol.184, issue.12, pp.6901-6910, 2010.
DOI : 10.4049/jimmunol.0903985

K. Ito, A. Hirao, F. Arai, S. Matsuoka, K. Takubo et al., Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells, Nature, vol.89, issue.7011, pp.997-100210, 1038.
DOI : 10.1038/35102167

T. Fukao, H. Kaneko, G. Birrell, M. Gatei, H. Tashita et al., ATM is upregulated during the mitogenic response in peripheral blood mononuclear cells, Blood, vol.94, issue.6, pp.1998-2006, 1999.

T. Tanaka, M. Kajstura, H. Halicka, F. Traganos, and Z. Darzynkiewicz, Constitutive histone H2AX phosphorylation and ATM activation are strongly amplified during mitogenic stimulation of lymphocytes, Cell Proliferation, vol.408, issue.1, 2007.
DOI : 10.1111/j.1365-2184.2007.00417.x

C. Cerboni, A. Zingoni, M. Cippitelli, M. Piccoli, L. Frati et al., Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK- cell lysis, Blood, vol.110, issue.2, pp.606-621, 2006.
DOI : 10.1182/blood-2006-10-052720

C. Cerboni, M. Ardolino, A. Santoni, and A. Zingoni, Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells, Blood, vol.113, issue.13, pp.2955-64, 2009.
DOI : 10.1182/blood-2008-06-165944

N. Nielsen, N. Odum, B. Urso, L. Lanier, and P. Spee, Cytotoxicity of CD56(bright) NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A, PLoS One, vol.7, issue.2, 2012.

V. Groh, S. Bahram, S. Bauer, A. Herman, M. Beauchamp et al., Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium., Proceedings of the National Academy of Sciences, vol.93, issue.22, pp.12445-50, 1996.
DOI : 10.1073/pnas.93.22.12445

V. Groh, A. Bruhl, H. El-gabalawy, J. Nelson, and T. Spies, Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9452-9459, 2003.
DOI : 10.1073/pnas.1632807100

Y. Zou, F. Mirbaha, and P. Stastny, Contact Inhibition Causes Strong Downregulation of Expression of MICA in Human Fibroblasts and Decreased NK Cell Killing, Human Immunology, vol.67, issue.3, pp.183-190, 2006.
DOI : 10.1016/j.humimm.2006.02.018

B. Erickson, N. Thompson, and D. Hixson, Tightly regulated induction of the adhesion molecule necl-5/CD155 during rat liver regeneration and acute liver injury, Hepatology, vol.37, issue.2, pp.325-359, 2006.
DOI : 10.1002/hep.21021

A. Chauveau, P. Tonnerre, A. Pabois, P. Gavlovsky, M. Chatelais et al., Endothelial Cell Activation and Proliferation Modulate NKG2D Activity by Regulating MICA Expression and Shedding, Journal of Innate Immunity, vol.6, issue.1, pp.89-104, 2013.
DOI : 10.1159/000351605

K. Ogasawara, J. Benjamin, R. Takaki, J. Phillips, and L. Lanier, Function of NKG2D in natural killer cell???mediated rejection of mouse bone marrow grafts, Nature Immunology, vol.141, issue.9, pp.938-983, 2005.
DOI : 10.1038/ni1236

L. Molinero, M. Fuertes, M. Girart, L. Fainboim, G. Rabinovich et al., NF-??B Regulates Expression of the MHC Class I-Related Chain A Gene in Activated T Lymphocytes, The Journal of Immunology, vol.173, issue.9, pp.5583-90, 2004.
DOI : 10.4049/jimmunol.173.9.5583

G. Venkataraman, D. Suciu, V. Groh, J. Boss, and T. Spies, Promoter Region Architecture and Transcriptional Regulation of the Genes for the MHC Class I-Related Chain A and B Ligands of NKG2D, The Journal of Immunology, vol.178, issue.2, pp.961-970, 2007.
DOI : 10.4049/jimmunol.178.2.961

H. Jung, B. Hsiung, K. Pestal, E. Procyk, and D. Raulet, RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry, The Journal of Experimental Medicine, vol.14, issue.13, pp.2409-2431, 2012.
DOI : 10.1093/oxfordjournals.jbchem.a021242

E. Nolte-'t-hoen, C. Almeida, N. Cohen, S. Nedvetzki, H. Yarwood et al., Increased surveillance of cells in mitosis by human NK cells suggests a novel strategy for limiting tumor growth and viral replication, Blood, vol.109, issue.2, pp.670-673, 2007.
DOI : 10.1182/blood-2006-07-036509

A. Sinclair, S. Yarranton, and C. Schelcher, DNA-damage response pathways triggered by viral replication, Expert Reviews in Molecular Medicine, vol.8, issue.05, pp.1-11, 2006.
DOI : 10.1017/S1462399406010544

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221734

C. Lilley, R. Schwartz, and M. Weitzman, Using or abusing: viruses and the cellular DNA damage response, Trends in Microbiology, vol.15, issue.3, pp.119-145, 2007.
DOI : 10.1016/j.tim.2007.01.003

A. Turnell and R. Grand, DNA viruses and the cellular DNA-damage response, Journal of General Virology, vol.93, issue.Pt_10, pp.2076-97, 2012.
DOI : 10.1099/vir.0.044412-0

L. Lanier, Evolutionary struggles between NK cells and viruses, Nature Reviews Immunology, vol.19, issue.4, pp.259-68, 2008.
DOI : 10.1038/nri2276

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584366

G. Wilkinson, P. Tomasec, R. Stanton, M. Armstrong, V. Prod-'homme et al., Modulation of natural killer cells by human cytomegalovirus, Journal of Clinical Virology, vol.41, issue.3, pp.206-218, 2008.
DOI : 10.1016/j.jcv.2007.10.027

C. Cerboni, F. Neri, N. Casartelli, A. Zingoni, D. Cosman et al., Human immunodeficiency virus 1 Nef protein downmodulates the ligands of the activating receptor NKG2D and inhibits natural killer cell-mediated cytotoxicity, Journal of General Virology, vol.88, issue.1
DOI : 10.1099/vir.0.82125-0

J. Ward, Z. Davis, J. Dehart, E. Zimmerman, A. Bosque et al., HIV-1 Vpr Triggers Natural Killer Cell???Mediated Lysis of Infected Cells through Activation of the ATR-Mediated DNA Damage Response, PLoS Pathogens, vol.102, issue.10, 2009.
DOI : 10.1371/journal.ppat.1000613.s009

J. Richard, S. Sindhu, T. Pham, J. Belzile, and E. Cohen, HIV-1 Vpr up-regulates expression of ligands for the activating NKG2D receptor and promotes NK cell-mediated killing, Blood, vol.115, issue.7, pp.1354-63, 2009.
DOI : 10.1182/blood-2009-08-237370

G. Matusali, M. Potesta, A. Santoni, C. Cerboni, and D. M. , The Human Immunodeficiency Virus Type 1 Nef and Vpu Proteins Downregulate the Natural Killer Cell-Activating Ligand PVR, Journal of Virology, vol.86, issue.8, pp.4496-504, 2012.
DOI : 10.1128/JVI.05788-11

G. Matusali, H. Tchidjou, G. Pontrelli, S. Bernardi, D. Ettorre et al., Soluble ligands for the NKG2D receptor are released during HIV-1 infection and impair NKG2D expression and cytotoxicity of NK cells, The FASEB Journal, vol.27, issue.6, pp.2440-50, 2013.
DOI : 10.1096/fj.12-223057

L. Vassena, E. Giuliani, G. Matusali, E. Cohen, and D. M. , The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway, Journal of General Virology, vol.94, issue.Pt_12, pp.2664-2673, 2013.
DOI : 10.1099/vir.0.055541-0

R. Le, N. Belaidouni, E. Estrabaud, M. Morel, J. Rain et al., HIV1 Vpr arrests the cell cycle by recruiting DCAF1/VprBP, a receptor of the Cul4-DDB1 ubiquitin ligase, Cell Cycle, vol.6, issue.2, pp.182-190, 2007.

J. Andersen, R. Le, and V. Planelles, HIV-1 Vpr: Mechanisms of G2 arrest and apoptosis, Experimental and Molecular Pathology, vol.85, issue.1, 2008.
DOI : 10.1016/j.yexmp.2008.03.015

J. Belzile, G. Duisit, N. Rougeau, J. Mercier, A. Finzi et al., HIV-1 Vprmediated G2 arrest involves the DDB1-CUL4AVPRBP E3 ubiquitin ligase, PLoS Pathog, vol.3, issue.7, 2007.

J. Norman, M. Mashiba, L. Mcnamara, A. Onafuwa-nuga, E. Chiari-fort et al., The antiviral factor APOBEC3G enhances the recognition of HIV-infected primary T cells by natural killer cells, Nature Immunology, vol.32, issue.10, pp.975-83, 2011.
DOI : 10.1038/ni.2087

A. Lau, K. Swinbank, P. Ahmed, D. Taylor, S. Jackson et al., Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase, Nature Cell Biology, vol.272, issue.5, pp.493-50010, 1038.
DOI : 10.1038/87979

A. Cerwenka, J. Baron, and L. Lanier, Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo, Proceedings of the National Academy of Sciences, vol.98, issue.20, pp.11521-11527, 2001.
DOI : 10.1073/pnas.201238598

A. Diefenbach, E. Jensen, A. Jamieson, and D. Raulet, Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity, Nature, vol.413, issue.6852, pp.165-71, 2001.
DOI : 10.1038/35093109

N. Guerra, Y. Tan, N. Joncker, A. Choy, F. Gallardo et al., NKG2D-Deficient Mice Are Defective in Tumor Surveillance in Models of Spontaneous Malignancy, Immunity, vol.28, issue.4, pp.571-80, 2008.
DOI : 10.1016/j.immuni.2008.02.016

S. Bauer, V. Groh, J. Wu, A. Steinle, J. Phillips et al., Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA, Science, vol.285, issue.5428, pp.727-736, 1999.
DOI : 10.1126/science.285.5428.727

V. Groh, R. Rhinehart, H. Secrist, S. Bauer, K. Grabstein et al., Broad tumor-associated expression and recognition by tumor-derived ???? T cells of MICA and MICB, Proceedings of the National Academy of Sciences, vol.96, issue.12, pp.6879-84, 1999.
DOI : 10.1073/pnas.96.12.6879

D. Pende, C. Cantoni, P. Rivera, M. Vitale, R. Castriconi et al., Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin, 4<1076::AID-IMMU1076>3.0.CO, pp.1076-8610, 2001.

A. Iguchi-manaka, H. Kai, Y. Yamashita, K. Shibata, S. Tahara-hanaoka et al., Accelerated tumor growth in mice deficient in DNAM-1 receptor, The Journal of Experimental Medicine, vol.92, issue.13, pp.2959-64, 2008.
DOI : 10.1038/bjc.1950.36

J. Bartkova, Z. Horejsi, K. Koed, A. Kramer, F. Tort et al., DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis, Nature, vol.10, issue.7035, pp.864-7010, 1038.
DOI : 10.1093/bioinformatics/14.9.755

V. Gorgoulis, L. Vassiliou, P. Karakaidos, P. Zacharatos, A. Kotsinas et al., Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions, Nature, vol.159, issue.7035, pp.907-920, 2005.
DOI : 10.1038/nm0696-682

M. Jinushi, M. Vanneman, N. Munshi, Y. Tai, R. Prabhala et al., MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma, Proceedings of the National Academy of Sciences, vol.105, issue.4, pp.1285-90, 2008.
DOI : 10.1073/pnas.0711293105

J. Croxford, M. Tang, M. Pan, C. Huang, N. Kamran et al., ATM-dependent spontaneous regression of early E??-myc-induced murine B-cell leukemia depends on natural killer and T cells, Blood, vol.121, issue.13, pp.2512-2533, 2013.
DOI : 10.1182/blood-2012-08-449025

M. Vales-gomez, S. Chisholm, R. Cassady-cain, P. Roda-navarro, and H. Reyburn, Selective Induction of Expression of a Ligand for the NKG2D Receptor by Proteasome Inhibitors, Cancer Research, vol.68, issue.5, pp.1546-54, 2008.
DOI : 10.1158/0008-5472.CAN-07-2973

K. Tang, C. He, G. Zeng, J. Wu, G. Song et al., Induction of MHC class I-related chain B (MICB) by 5-aza-2???-deoxycytidine, Biochemical and Biophysical Research Communications, vol.370, issue.4, pp.578-83, 2008.
DOI : 10.1016/j.bbrc.2008.03.131

K. Tang, H. Ren, J. Cao, G. Zeng, J. Xie et al., Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB, The Journal of Cell Biology, vol.24, issue.2, pp.233-242, 2008.
DOI : 10.1002/jcp.20622

D. Berghuis, M. Schilham, H. Vos, S. Santos, S. Kloess et al., Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis, Clinical Sarcoma Research, vol.2, issue.1, pp.8-10, 2012.
DOI : 10.1186/1756-8722-3-5

W. Leung, Q. Vong, W. Lin, L. Janke, T. Chen et al., Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via RXR?? activation, The Journal of Experimental Medicine, vol.32, issue.12, pp.2675-92, 2013.
DOI : 10.1016/S0304-4165(01)00099-X

B. Zhou and S. Elledge, The DNA damage response: putting checkpoints in perspective, Nature, vol.408, issue.6811, pp.433-442, 2000.

S. Textor, N. Fiegler, A. Arnold, A. Porgador, T. Hofmann et al., Human NK Cells Are Alerted to Induction of p53 in Cancer Cells by Upregulation of the NKG2D Ligands ULBP1 and ULBP2, Cancer Research, vol.71, issue.18, pp.5998-6009, 2011.
DOI : 10.1158/0008-5472.CAN-10-3211

H. Li, T. Lakshmikanth, C. Garofalo, M. Enge, C. Spinnler et al., Pharmacological activation of p53 triggers anticancer innate immune response through induction of ULBP2, Cell Cycle, vol.10, issue.19, pp.3346-58, 2011.
DOI : 10.4161/cc.10.19.17630

A. Heinemann, F. Zhao, S. Pechlivanis, J. Eberle, A. Steinle et al., Tumor Suppressive MicroRNAs miR-34a/c Control Cancer Cell Expression of ULBP2, a Stress-Induced Ligand of the Natural Killer Cell Receptor NKG2D, Cancer Research, vol.72, issue.2, pp.460-71, 2012.
DOI : 10.1158/0008-5472.CAN-11-1977